1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4: NETWORK THEOREMS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.1,Page number: 105"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current I in the circuit using superposition theorem.\"\"\"\n",
"\n",
"#Calculations:\n",
"I1=-0.5*(0.3/(0.1+0.3))\n",
"I2=80e-03/(0.1+0.3)\n",
"I=I1+I2\n",
"\n",
"\n",
"#Result:\n",
"print \"The current I in the circuit is %.3f A.\" %(I)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current I in the circuit is -0.175 A.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.2,Page number: 106"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding current I_x in the network using superposition theorem.\"\"\"\n",
"\n",
"#Calculations:\n",
"I1=10.0/(50+150)\n",
"I2=40*(150.0/(50+150))\n",
"I3=-120*(50.0/(150+50))\n",
"Ix=I1+I2+I3\n",
"\n",
"\n",
"#Result:\n",
"print \"The current Ix determined using superposition principle is %.2f A.\" %(Ix)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current Ix determined using superposition principle is 0.05 A.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.3,Page number: 106"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the voltage across resistor by applying the principle of superposition.\"\"\"\n",
"\n",
"#Calculations:\n",
"i=4.0*(1.0/(1.0+(2+3)))\n",
"R=3.0\n",
"v_4=i*R\n",
"v_5=(-5*(1.0/(1+(2+3))))*R\n",
"v_6=6.0*(3.0/(1+2+3))\n",
"v=+v_4+v_5+v_6\n",
"\n",
"\n",
"#Result:\n",
"print \"The total voltage(v) across the 3 ohm resistor is %.2f V.\" %(v)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total voltage(v) across the 3 ohm resistor is 2.50 V.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.4,Page number: 108 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the value of I_s to reduce the voltage across the 4-ohm resistor to zero. \"\"\"\n",
"\n",
"#Variable Declaration:\n",
"V_source=10.0 #Voltage of the source(in Volts) \n",
"\n",
"\n",
"#Calculations:\n",
"I1=V_source/(2+4+6)\n",
"\n",
"\"\"\" I2(from top to bottom in the 4 ohm resistor) = -Is*((2+6)/(2+6+4)) = -(2/3)*Is ;\n",
" \n",
" The voltage across the 4 ohm resistor can be zero,only if the current through this resistor is zero. \n",
" \n",
" I1+I2=0; \"\"\"\n",
"\n",
"Is=I1*(3.0/2)\n",
"\n",
"\n",
"#Result:\n",
"print \"The current Is to reduce the voltage across the 4 ohm resistor to zero is %.2f A.\" %(Is) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current Is to reduce the voltage across the 4 ohm resistor to zero is 1.25 A.\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.5,Page number: 110"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question: \n",
"\"\"\"Finding the voltage across the load resistor using Thevenin's theorem.\"\"\"\n",
"\n",
"#Calculations:\n",
"I1=(50.0-10.0)/(10+10+20)\n",
"I2=1.5*(10.0/(10.0+(10+20)))\n",
"I=I1+I2\n",
"V_Th=I*20\n",
"R_Th=1.0/((1.0/20)+(1.0/(10+10)))\n",
"R_L=5.0\n",
"V_L=V_Th*(R_L/(R_L+R_Th))\n",
"\n",
"\n",
"#Result:\n",
"print \"The voltage across the load resistor R_L is %.2f V.\" %(V_L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The voltage across the load resistor R_L is 9.17 V.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.6,Page number: 111"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the voltage across the resistor by applying Thevenin's theorem.\"\"\"\n",
"\n",
"#Calculations:\n",
"V_Th=5.0*1.0\n",
"R_Th=3.0\n",
"R_L=3.0\n",
"V_L=V_Th*(R_L/(R_L+R_Th))\n",
"\n",
"\n",
"#Result:\n",
"print \"The voltage across the resistor by applying Thevenin's Theorem is %.2f V.\" %(V_L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The voltage across the resistor by applying Thevenin's Theorem is 2.50 V.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.7,Page number: 113"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding Norton's equivalent circuit with respect to terminals AB.\"\"\"\n",
"\n",
"#Calculations:\n",
"I1=10.0/5\n",
"I2=5.0/10\n",
"I_N=I1+I2\n",
"R_N=1.0/((1.0/5)+(1.0/10))\n",
"I_L=I_N*((10.0/3)/((10.0/3)+5))\n",
"\n",
"\n",
"#Result:\n",
"print \"When terminals AB are shorted, the current I_N is %.2f A.\" %(I_N)\n",
"print \"The value of current that would flow through a load resistor of 5 ohm if it were connected across terminals AB is %.2f A.\" %(I_L) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"When terminals AB are shorted, the current I_N is 2.50 A.\n",
"The value of current that would flow through a load resistor of 5 ohm if it were connected across terminals AB is 1.00 A.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.8,Page number: 114 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the available power from the battery.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"Voc=12.6 #Open-circuit voltage(in Volts)\n",
"Isc=300.0 #Short-circuit voltage(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"Ro=Voc/Isc\n",
"P_avl=(Voc*Voc)/(4*Ro)\n",
"\n",
"\n",
"#Result:\n",
"print \"The available power from the battery is %.2f W.\" %(P_avl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The available power from the battery is 945.00 W.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.9,Page number: 115 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the available power from the battery.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"no_of_cells=8 #Number of dry cells in the battery\n",
"emf=1.5 #EMF of each cell(in Volts)\n",
"int_res=0.75 #Internal resistanceof each cell(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"Voc=no_of_cells*emf\n",
"Ro=no_of_cells*int_res\n",
"P_avl=(Voc*Voc)/(4.0*Ro)\n",
"\n",
"\n",
"#Result:\n",
"print \"The available power from the battery is %.2f W.\" %(P_avl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The available power from the battery is 6.00 W.\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.10,Page number: 115 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Plotting a curve showing the variation of the output power Po with the load resistance R_L.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"P=25.0 #Power to be delivered to the speaker(in Watts)\n",
"Ro=8.0 #Resistance of the speaker(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"V_Th=sqrt(P*4*Ro)\n",
"Vo=V_Th/2.0\n",
"R_Th=Ro\n",
"R_L=0.0\n",
"P1=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"R_L=2.0\n",
"P2=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"R_L=4.0\n",
"P3=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"R_L=6.0\n",
"P4=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"R_L=8.0\n",
"P5=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"R_L=16.0\n",
"P6=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"R_L=32.0\n",
"P7=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
"P8=0.0\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The voltage provided by this amplifier to to the speaker is %.2f V.\" %(Vo)\n",
"print \"(b)(i)If the load is a short circuit(R_L=0),the output voltage Vo would be zero and hence the output power,Po= Vo*I_L = 0*I_L =0.\"\n",
"print \" (ii) If the load is an open circuit(R_L=0),the load current I_L would be zero and hence the output power,Po= Vo*I_L = Vo*0 = 0.\"\n",
"print \"(c)(i) For R_L = 0 , Po = %.2f W. \\n (ii) For R_L = 2 Ohms, Po = %.2f W.\" %(P1,P2) \n",
"print \" (iii) For R_L = 4 Ohms, Po = %.2f W. \\n (iv) For R_L = 6 Ohms, Po = %.2f W.\" %(P3,P4) \n",
"print \" (v) For R_L = 8 Ohms, Po = %.2f W. \\n (vi) For R_L = 16 Ohms, Po = %.2f W.\" %(P5,P6) \n",
"print \" (vii) For R_L = 32 Ohms, Po = %.2f W. \\n (viii) For R_L = infinity, Po = %.2f W.\" %(P7,P8)\n",
"print \"Note: Po is the power delivered to the speaker (in Watts) and R_L is the speaker resistance(in Ohms).\" \n",
"\n",
"\n",
"from __future__ import division\n",
"from pylab import *\n",
"from matplotlib import *\n",
"import numpy as np\n",
"%pylab inline\n",
"\n",
"\n",
"#Variable declaration:\n",
"Rdata=[0.0, 2.0, 4.0, 6.0, 8.0, 16.0] #(in ohm)\n",
"Podata=[0, 16, 22.22, 24.49, 25, 22.22] #(in Watt)\n",
"\n",
"\n",
"#Calculations:\n",
"R=np.array(Rdata)\n",
"Po=np.array(Podata)\n",
"length=len(R)\n",
"Rmax=R[length-1]\n",
"a=polyfit(R,Po,4)\n",
"Rfit=[0]*100\n",
"Pofit=[0]*100\n",
"for n in range(1,100,1):\n",
" Rfit[n-1]=Rmax*(n-1)/100\n",
" Pofit[n-1]=a[0]*Rfit[n-1]**4+a[1]*Rfit[n-1]**3+a[2]*Rfit[n-1]**2+a[3]*Rfit[n-1]+a[4]\n",
"\n",
"#Plot the data and then the fit to compare (convert xfit to cm and Lfit to mH)\n",
"plot(Rdata,Podata,'o')\n",
"plot(np.array(Rfit),np.array(Pofit),'g.') \n",
"xlabel('R_L (in ohm) ')\n",
"ylabel('Po (in Watt) ')\n",
"title('Ouput power(Po) vs. Speaker Resistance(R_L)')\n",
"grid()\n",
"print \"\\n\\nThe required plot is shown below: \"\n",
"show()\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The voltage provided by this amplifier to to the speaker is 14.14 V.\n",
"(b)(i)If the load is a short circuit(R_L=0),the output voltage Vo would be zero and hence the output power,Po= Vo*I_L = 0*I_L =0.\n",
" (ii) If the load is an open circuit(R_L=0),the load current I_L would be zero and hence the output power,Po= Vo*I_L = Vo*0 = 0.\n",
"(c)(i) For R_L = 0 , Po = 0.00 W. \n",
" (ii) For R_L = 2 Ohms, Po = 16.00 W.\n",
" (iii) For R_L = 4 Ohms, Po = 22.22 W. \n",
" (iv) For R_L = 6 Ohms, Po = 24.49 W.\n",
" (v) For R_L = 8 Ohms, Po = 25.00 W. \n",
" (vi) For R_L = 16 Ohms, Po = 22.22 W.\n",
" (vii) For R_L = 32 Ohms, Po = 16.00 W. \n",
" (viii) For R_L = infinity, Po = 0.00 W.\n",
"Note: Po is the power delivered to the speaker (in Watts) and R_L is the speaker resistance(in Ohms).\n",
"Populating the interactive namespace from numpy and matplotlib\n",
"\n",
"\n",
"The required plot is shown below: "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['streamplot', 'rc', 'tri', 'axes', 'legend', 'rc_context', 'figure', 'f', 'quiver', 'axis', 'linalg', 'draw_if_interactive', 'text', 'random', 'colors', 'stackplot', 'contour', 'colorbar', 'rcdefaults', 'table', 'power', 'info', 'fft', 'test']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEaCAYAAAAYOoCaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVPX+B/D3oKAggwMIsioqpYIgKGnumJoKWZT7vpRk\nlkVZ1+61cmnxWhoumWlq1EUyrLypuC+4b10l9HZdMFCRlEVAVtk+vz/4cZqBGRiGM8w5w+f1PD6P\n58zM4T1nZs73nM/3nO9REBGBMcZYk2Nh6gCMMcZMgxsAxhhrorgBYIyxJoobAMYYa6K4AWCMsSaK\nGwDGGGuiuAFgovr73/+O1atXN2gZiYmJ6Nevn0iJpG/GjBl4//33TR1DbydOnECXLl1MHaNeNmzY\ngDfffNNoy5frd5YbAB2ioqLg7+8PpVIJV1dXzJ07F7m5uY3yt+W2QaiSkZGBf/3rX5gzZw4AID4+\nHhYWFlAqlWjVqhU6duyIL7/8ss7l+Pv7Q6VSYffu3caOrCElJQXPPPMM7OzsYGdnBx8fH3zzzTdG\n/7sKhQIKhcIoyw4ODoa1tTWUSiXs7OwwYsQIpKSkNGiZAwYMwNWrV+t83uLFizF16tQG/S0xlJSU\n4OOPP8bf/vY3AJWfs/r30s3NDf/4xz+gzyVRXl5eOHz4cI35pvrONhQ3AFqsXLkSCxcuxLp165CX\nl4eEhASkp6dj2LBhKC0tNXU8ySkrKwNQ2WiGhoaiRYsWwmPu7u7Iy8tDQUEBIiMjMW/ePCQkJNS5\nzMmTJ2PDhg1Gy6zNhAkT0LVrV9y/fx8PHz7E9u3b4eHh0Sh/W4zrMSsqKmrMUygUwvf4zp07ICK8\n/vrrDf5bcvLLL7+ga9eucHV11Zifm5uLgoIC7Nq1C2vWrMGOHTvqXFZtjbUpvrMNRkxDbm4u2dra\nUlxcnMb84uJi8vDwoC1bthAR0fTp0+m9994THj969Ch5eHgI0+3bt6dly5ZRt27dyNbWlsaPH0+F\nhYVERPTNN99Q//79NZavUCgoKSmJNmzYQJaWlmRlZUW2trb07LPPas2pUChozZo15O3tTUqlkl59\n9VUqLy8nIqKKigp69913ydnZmVq3bk1jxoyhBw8eEBHRtGnTaOXKlURElJqaSgqFgtatW0dERElJ\nSeTg4CD8jW3btlHnzp1JqVRSYGAgnT9/XuP9LV++nPz9/cna2prKyspo8ODBtHXrVp3rhIjIycmJ\nvv/+eyouLqaXXnqJ7O3tycHBgcLDw6m4uFh4XmpqKllbW1NJSUmN975t2zYKCgrSmPf5558L62rH\njh3k7e1NrVq1IldXV1q+fLnWdVidlZUVXb58WetjycnJpFAoaOPGjeTh4UH29vb04YcfCo+Xl5fT\ne++9R25ubmRnZ0ejRo2ijIwM4fGwsDBydnamVq1aUe/evenSpUvCYzNmzBC+Sw8fPqTg4GB64403\niIjo0qVL1L9/f1IqldSuXTv69ttvhddNnz6d5syZQyEhIaRUKunw4cM1cgcHB9PmzZuF6XXr1lGX\nLl2E6dqWr2s9Vv9cFy1aRM7OzmRra0ve3t506NAh2rt3L1lZWZGlpSXZ2tpSQEAAERF9/fXX9Pjj\nj1OrVq3I3d2dIiMjheUcPXqU3N3daeXKleTi4kKOjo60fv164fH8/Hx6+eWXycnJiZRKJfXp04eK\nioqIiOjw4cMUEBBASqWSOnfuTHv37hVeN3PmTPr4449rfJZVvxciol69eun1PfHy8tK6nolq/85K\nFTcA1ezdu5dsbGyooqKixmPh4eE0ceJEIqr80b7//vvCY9oagMDAQEpPT6eHDx/S4MGD6a233iIi\n3Q3AzZs3tS5bG4VCQSNGjKC8vDy6d+8e+fj40Jo1a4iIaO3atdSlSxe6e/cuFRUV0YQJE2j06NFE\nRLRlyxYaNWoUERFt3bqVOnXqROPHjycios2bN1NYWBgREZ04cYKcnJzot99+E57r6uoqbKS9vLyo\nV69elJ6eLnzhnZyc6Ndff9W6TsrLy+nnn38mCwsLunLlCs2fP58GDhxIOTk5lJOTQ8HBwTR//nyN\n92hnZ6d1g1xYWEhKpZJu3LghzAsKCqIffviBiIgcHBzo5MmTRESUl5cnvIe6DBw4kAYMGECxsbGU\nkpKi8VjVRmPmzJlUUlJCN27cIBcXF9q5cycREX388cfUt29fSk9Pp7KyMpo7dy4999xzwuu3bt1K\nxcXFVFZWRgsWLKDOnTsLj1V93pmZmfTEE08In312djY5OztTdHQ0ERH997//JUdHR/rPf/5DRJUN\ngIODgzD96NGjGu8pODiYNm3aREREmZmZNGTIEJo5c2aty7948WKt61H9c01MTCRPT0/6888/iYjo\n7t27lJycTEREixcvpqlTp2rk2b9/P6WmphIR0enTp8nW1pbOnDkjLLd58+b04YcfUkVFBe3Zs4es\nrKyEnZfp06fTiBEjKDMzk4iILly4QI8ePaKkpCRSqVR06NAhIiKKj4+n1q1bU1paGhERPfHEE/Tj\njz/W+CzLysqIiOjMmTPUqlUrio+Pr7H+qqutASDS/Z2VKm4AqvnXv/5Fnp6eWh9buHAhPf3000Sk\nuddGVLMB8PLyEo4WiIgOHTpE7u7uRKRfA6C+bG0UCgUdOXJEmN60aRP169ePiIj69u0r/OiJiP74\n4w9q3rw5FRYWUlJSEtnb21NFRQXNmTOHNmzYIOSeNm2asEemrRHq3LkzHThwQHh/VRuOKpaWlnTt\n2jWNdWJhYUEqlYpat25Nvr6+FBUVRURE7u7uwg+WiOjIkSPk4uKisTx3d3c6ceKE1vc/ZcoUWrp0\nKRERXb9+nZRKpbA32K5dO9q4cSM9fPiw1nVYXWZmJs2fP5+6du1KFhYW5OvrS6dPnyaivzYaf/zx\nh/D89957jyZPniysD/UNQ1paGjVr1kzIpC4vL48UCgWlp6cTUeW6njVrFnXr1o1WrFghPC8qKooG\nDBig8drw8HD6+9//TkSVG8SXXnqp1vc0aNAgsrGxodatW5NCoaDevXsLR6J1LV/XelT/rt+4cYOc\nnZ3p8OHDNfZ8Fy1aRFOmTKk135gxYzSOLKytrTX2zJ2dnenkyZNUVFREVlZWdPXq1RrL0NbQDB8+\nnDZs2EBERI899hjt379feKzqs1SpVGRtbU0KhUJjvdemrgagtu+sFHEfQDVt2rRBVlaW1ppseno6\n2rRpo/ey1OvH7u7uuH//vigZ61p+eno62rVrJzzm6emJ8vJyZGZmolOnTmjVqhUSEhJw4sQJPPPM\nM3Bzc8P169dx/PhxDBo0CACQmpqKlStXwt7eXviXmpqKzMxMYbnVa6r29vbIy8vTmOfm5obs7Gzk\n5OTgypUrmD59OgDg/v37NTKmp6drvDYvLw8qlUrre580aRK+//57AEBMTAyef/55tGzZEgAQGxuL\nnTt3on379ujfvz9OnDihx9oEHB0dsWLFCvz+++/IzMxE7969ERYWplFb17XOU1NT8fzzzwvrysfH\nB1ZWVsjKykJJSQkiIiLQvn17qFQqeHp6AgDy8/MBVNb/4+LiUFxcjJdffllYfmpqKs6dO6fxGcTE\nxCA7OxtAZT3axcWl1vekUCiwdu1a5OTk4PLly7h9+zb27Nmj1/L1WY/e3t5YuXIl3n//fbRt2xZj\nxoxBamqqzjw7duxAz549oVKpYG9vj507d6KgoEDjM7Cw+GuzZGNjg0ePHiErKwulpaXo2LFjjWWm\npqZi+/btGu/j1KlTePDgAYDK7+XDhw9rvC4rKwv5+fmIjIzEqlWrtD6nvmr7zkoRNwDV9OnTBwqF\nQviRVCkuLsaePXswZMgQAICVlRUKCwuFx7OysmosS/2HkJqairZt2+r1Wn3PCKm+/KqNQdu2bXHr\n1i3hsTt37sDCwkJovAYNGoTt27ejtLQUbm5uGDRoEKKiopCdnY2AgAAAlRv3xYsXIzs7W/iXn5+P\niRMn6szj7++Pa9eu6ZVdW0ZnZ2dh+u7duygpKUHnzp21vn7o0KHIyMjAb7/9hm3btmHSpEnCY717\n98auXbuQmZmJsWPHYty4cXplUmdvb4+3334bGRkZyMjIEObrWueurq44fPiwxvoqLCyEu7s7vvvu\nOxw5cgSnTp1CTk6OsIyqnQyFQoHZs2dj+PDhCAkJEb4brq6uGDp0qMYy8/LysH79+nq9l6q/4+vr\ni48++gjvvvsuKioq6ly+vutxypQpOHXqFG7fvo0WLVrgnXfeEd6Xuqrvz9KlS/HgwQNkZ2fj2Wef\n1asD3NHREVZWVvjjjz9qPObq6opZs2bVeB/vvvsugMrv5fXr17Uu18LCAm+88QY6dOiAyMjIOnPU\npq7vrBRxA1BN69atsWjRIrz88svCHs/9+/cxZcoUuLi4CKe1de/eHXv27EF2djaysrKwatUqjeUQ\nEdatW4eMjAzk5eVh2bJlGD9+PIDKL+SVK1fw22+/oaSkBEuXLtV4rYODg8bGUZcVK1YgPz8f9+/f\nx+rVq4Uf6Pjx4/H5558jLS0NxcXFeO+99/Dcc8/B2toaQGUD8MUXX2DgwIEAKk8V/OKLLzBgwADh\nR/vSSy9h/fr1uHTpEoDKBvDAgQPCXqs2ISEhOHbsWJ25qzJ+9NFHyMnJQW5uLj788EONjfixY8cw\nZMgQWFpaan29paUlxo4di7fffhvZ2dkYNmwYAKC0tBSxsbEoKCiAhYUFbG1tNfYoa/PBBx8IG4qq\nDWG7du2EhhsAPv74Y5SUlCApKQlbtmwR1nl4eDgWLlyIP//8EwCQnZ2NvXv3AgAKCwvRrFkztG7d\nWvg81FVtAL/44gt07twZo0aNQnFxMcLCwpCQkIAff/wR5eXlqKiowKVLl4RGVp8NZ3VTp05FYWEh\ntm/fjueff17n8vVdjzdu3MCJEydQVlYGKysrtGjRQnieo6OjcOYRUPnZlJaWQqlUwsLCAocPH8b+\n/fv1yt2yZUtMnDgRb731lnCEfuHCBZSUlGDq1KnYsWMHjh49CiJCaWkpTp06hbS0NAD6fS8XLFiA\ntWvXauyY6VJSUoLi4mLhX3l5OYC6v7OSZKLSk+Rt3rxZOIOnbdu2NGfOHMrJyREeLyoqomeffZas\nra0pMDCQIiMjNfoOvLy86J///KewjHHjxgm1VyKi999/n5RKJbVv356io6PJwsJC6AP4/fffqWvX\nrqRUKun555/Xmk+hUNDatWupU6dOpFQqae7cuULHdUVFBS1YsICcnJzIzs6ORo8eLXSkERFdvXqV\nFAoFfffdd0RElJOTQ82bN6dPP/1U42/8+OOP5OfnR7a2tuTs7EwvvPAC5efnC++vei00MzOTPDw8\nhLr30aNHdfanFBUV0Ysvvkj29vZkb29PL730ksZZQCEhIbRr1y6tr61y4sQJUigU9NprrwnzSkpK\naNiwYaRSqcjGxoYCAgLo6NGjRER069YtsrW1pTt37mhd3pw5c6hjx47UqlUrUiqVNGzYMKFDr6pu\n/PXXX5OHhwepVCpasmSJ8NqKigpaunQpeXp6klKpJC8vL3r33XeJqPLMspCQELK2tqaOHTvSd999\np/F5q/e3VFRU0LRp02j48OFUXFxMiYmJNGTIELKzsyOVSkWDBg2ihISEGq/TpfpZQEREy5cvpx49\nehAR6Vx+betR/XNNTEyknj17kq2tLSmVSho+fLiwfu/du0e9evUipVJJPXv2JCKilStXkqOjI9nb\n29PUqVNp4sSJwnvQ9n1R/54VFBRQeHg4OTo6kp2dHfXv31/4rsXHx9OTTz5JSqWSHBwcaMSIEXT7\n9m3hO9GuXTuhUzg5OZksLCw0+hqIiHx9fWn16tW1rk8vLy9SKBQa/6ry6/OdlRqjNQBFRUUUFBRE\nAQEB9Nhjj1FERAQREWVlZdHQoUPJz8+Pnn76acrOzjZWBJOqq7OoodQ7jaXkH//4B61atapBy/jt\nt9+ob9++IiUSh7ZTB5l8bNy4UdgGGYMUv7P6UBAZ745gRUVFsLa2RllZGfr3749ly5bh559/RqdO\nnRAREYFVq1YhOTm5wUMHSFGHDh2wefNmPPXUU0ZZvoWFBZKSkrR2ijHxpaSkoGPHjigrK9O7pMSY\n1Bn1m1xVcy4pKUF5eTmcnZ2xZ88eoY4+ZcoUxMXFGTOC2TLW0AFMN17n5u/27dtQKpU1/tnZ2dV6\ndpNcGfUIoKKiAj169MDNmzfxyiuv4NNPP4WdnZ3G6VbVpxljjDWO5sZcuIWFBRISEpCbm4vhw4fj\n6NGjxvxzjDHG6sGoDUCV1q1bIzQ0FOfOnYOTkxMyMzPRpk0bZGRkaJz7XcXd3V04hYsxxph+OnXq\nhKSkJL2fb7Q+gKysLOGq0KKiIhw8eBB+fn4ICQlBdHQ0ACA6OhohISE1XpuWlgaqPENJ0v8WLVpk\n8gyck3NyTs5Y9e/mzZv12k4b7QggLS0N06ZNAxGhuLgYkyZNQmhoKPr06YPx48djy5YtcHFxQWxs\nrLEiGF1Dx1VvLJxTXJxTXHLIKYeMhjBaA+Dn5ydcRarOwcEBBw8eNNafZYwxpic+obkBZsyYYeoI\neuGc4uKc4pJDTjlkNIRRTwM1lEKhgARjMcaYpNV328lHAA0QHx9v6gh64Zzi4pzikkNOOWQ0BDcA\njDHWRHEJiDHGzASXgBhjjOmFG4AGkEtdkHOKi3OKSw455ZDRENwAMMZYE8V9AIwxZia4D4Axxphe\nuAFoALnUBTmnuDinuOSQUw4ZDcENAGOMNVHcB8AYY2aivtvORrkhDGOMNUT4rnBcz7oOG0sbOLVy\nwq2cWzX+HzM6Bn87+Ld6Py9mdAxULVWmfosmwUcADRAfH4/g4GBTx6gT5xQX5xRXVU5dG/mY0TEI\n2xaGY7eOAQDaWLdBZlFmjf+P9RmL9IL0ej+vg6oD2rVuV2tjIJd1yUcAjDHJUt/IV+2Jnz91Hm53\n3fDw0UOcunMKgOYGO3xXOGwsbQAAQW5BULVU4dAfh2r8f+OojZj006R6P69FsxZCY9BjQw+NxqDq\nSKHoRhH2P7nf7I4U+AiAMWZU6ht99Y189T1xl1YuuFdwr8YG++DUg8JyNo7aqPP/qpYq5BTn1Pt5\nk36ahL1Je4XGQFe+sT5jETtW2ncwrO+2kxsAxliDaduz17bRV9/IH5x6UGPj++PYH/HOwXe0brCN\nSVdjUD2fj5OPRllKikcD3AA0IrnUBTmnuDhnJUP27NU38lV74mH/DMO/3/23JDao6o2B+pHCtNbT\nsCJtRb36DUyB+wAYY0ZRfS//etZ1jY08AK019uobffUyiqqlCouDF0tmA6otX+zYWMTHx2v0Q6j3\nG4TvCoeqpUqWZxXxEQBjTKfa9vLzS/K1lm+q19jlsjGsS22lIvWzlEzZV8AlIMZYvRhav696rTlt\n5PVVvYEL2Roiib4CHgyuEcllfBDOKS5zyBm+KxzBUcEI2RqC3zN+x7Fbx7A3aa/QGFRN33xwE0Bl\n2ePsS2cx1mcsDk49CFVLlVAeaegGTg7rs3rG6u89ZnSMsG5u5dzSWJ9Sxn0AjDURuso5htbv2V/U\n1416X4G1pTWCo4Il2zfAJSDGzFT10o56nbquM3OaamlHDOrrr7H7BrgPgLEmRtcQCvXptGXGod43\nUFU6MyZuABoRnw8uLs6pn9r27NWHULC/Z49sl2zJd9qaen3qw9CM1Y+mqn92Yn8OfB0AY2ZCnz37\n2sbJmd9zPn4u+lljg881/MZVvd9E/dqJ8F3hJv88jHYEcOfOHUyePBnZ2dkoKSnBiy++iL/97W9Y\nvHgxNm3aBCcnJwDAsmXLMGLECM1QMjkCYExM+u7Z13Y6pvr/pbSXzyoZuyQkmRLQ/fv3kZGRgW7d\nuiE/Px89evTA9u3b8e9//xtKpRJvvfWW7lDcADAzZkjNXn3Pnuv38qVeEjLGPQkkUwJq27Yt2rZt\nCwCwtbWFv78/7t69CwBms3GXQ+0S4JxiiYs7jjVrDuD+/VS0beuB119/GqGhA7U+t7ax7dXLANX3\n7IG/TsesWo62PXt9SgdSX59V5JBTrIzqn50UykGN0geQkpKCCxcu4JtvvsGFCxewbt06bNq0CT17\n9sSaNWvg4ODQGDEYM1hc3HG88cZ+3Lz5MYB4AME40yYQ7a8SPF3car2CVt+x7bXt2atvFExdL2bi\nUv8eVDXyjc3oZwHl5+dj8ODBWLhwIcLCwpCZmQlHR0cAwOLFi3Hz5k1ER0drhuISEDMhbUMjbD+6\nHznpvkCBE6C6BZTaAC0eAu3EG9ueyzlNizHOEJJMCQgASktLMXr0aEyaNAlhYWEAgDZt2giPv/zy\nyxg8eLDW186YMQNeXl4AAJVKhYCAAOEQrOqybJ7maUOnV5xegXy3fNhY2mCu01x89etXwvSd3+7g\nSvoVoMP/Nwb/uY6cB7eBx24DBW2A9MzKX459Zcnm8bzHMa31NHxZ8qUwvaTnEuEMnJPHT6L0Zin+\nPbVyyOP4+HjMdZor/MDnOs1FwtkESa0fnm6c6aqRRgG1klAyEHYjDPGL4+t8fXx8PKKiogBA2F7W\nh9GOAIgI06dPh6OjIyIjI4X56enpcHZ2BgCsXbsWR48exc8//6wZSiZHAPEyqF0C0s9Zn9p6XWob\n2Ky2Dldde+/qNwXB3SCgWAVYHAKsgoDYH9F26khc/ey0JK+glfrnXkUOORsjoxhnCEnmCODUqVOI\njo6Gv78/AgMDAQCffPIJYmJikJiYiJKSErRv3x6bN282VgQmA9pq6zdvLgQAjUbAkA17+K5wnTcJ\nr8/4NzGjYzBq4/NI3dYDKSnvA73CgPP/Rif3T7F6xFfCD5XHymENETM6xqhnCGnDVwIzkxo+/D0c\nOPDRXzNGhQOO19GmdSpCgvvptcde2zny6uO219bhqs/ee1zccaxdexDFxc3QsmU55s0bZvCRCmO1\nCY4KNmgMIclcB9AQ3AA0Ha4v98S9EmVlp+pPMcCEMMDLOBt2gDtcmTwYWg7iBqARyaF2CUgjp67z\n4k9fvIxcu9TKJx0ZBHjaAI/thV2eK3p195Xkhl0K61MfnFM8jZ3R0P4kyfQBsKattvvHagxY5mAP\nlKGyg/XM28D5/mg1oQ82hq3A8OH9dF78VH2aa+/MnKh/v405gBwfATDR6Hv/2OolmynfzYDV/iCU\nF7Ti2jpj1dSnP4CPAFij0vcuU1XP1VayOfH6UeB10+RnTOqMecUw3xO4AaouyJA6MXOq30s2pzjH\noPvH6rqXbFNcn8bEOcVjyozq9xsWu4+LjwBYnXTt5Vcf14bvH8uY+Kr/lsTsE+A+AKZVbaUdXWPR\n86mVjBlfbX0C3AfARKF+1o56Pb+uESsZY8YlZp8A9wE0gBxql4B+OavX9tW/ZOr1/Paq9lrr942V\nUwo4p7jkkFNKGcXsE+AjgCasttq++rgkXM9nTDrE/D1yH0ATpl5LrF7b53o+Y/LDfQCsVup7/ZbN\nLAHoru0zxswb9wE0gJTqgrVRz6l+3n4ry1aNUts3JKeUcU5xySGnHDIago8AzFhc3HG8vPsN5GT8\niZY7WmHdU2s0OnejwqJ4b58xM1B1U6X64j4AMyXcaGXAKWF45VYpXbA5bAV+KvmWSz2MmQnNmyrV\nb9vJJSAztWbNgcovRGnlHj/uBqFg2xl8s/6syUs9jDHxCL91A3AD0ABSrQuG7wrHua7RwOQQYPf6\nynH2/3UQKFahuLiZqePpJNX1WR3nFJcccko546NHhlfyuQ/ADF3Puo5c+1uA/S1g2DvAj4sBVO7x\nt2xZbtJsjDFxtWhRZvBruQ/ADFQfHKrqdoktMl3xaNPvQHHlxr9Tp39g9eoRPNY+Y2akIX0AfARg\nBtTH7VG/ine01XR8c2Ol2k3MeePPmLmp+k2vXfs+9u+v54tJgiQaq4ajR4+aOgIREY2MHklYDAra\nGETZRdk1HpdKzrpwTnFxTvHIISNR/bedfAQgU+pln/Wh6/kqXsZYvXEfgEzV5z6hjLGmob7bTj4N\nVKaMeZ9QxljTwA1AAzT2ucHqY/avD12v95jgUj6HWR3nFBfnFI8cMhqC+wBkRP1sn3cOvsNlH8ZY\ng3AfgIyEbA3B3qS9PGY/Y0yr+m47uQGQsOoXeFXN47N9GGPaSKYT+M6dOxg4cCD8/PzQuXNnfPrp\npwCABw8eYNiwYfD398fw4cORk5NjrAhGZ+y6oPrY/eG7woVbwdV34y+X+iXnFBfnFI8cMhrCaA2A\nlZUVvvzyS1y+fBn/+c9/sGnTJvz2229YtGgRQkNDkZiYiJEjR2LRokXGiiB7fKYPY8yYGq0ENGbM\nGMyaNQvz5s3D+fPn4ejoiMzMTDz55JNISkrSDNWES0B8gRdjzFCS7ANISUnBoEGDcPnyZXh4eODh\nw4fCY3Z2dhrTQNNuAPgCL8aYoSR3U/j8/HyMGTMGq1evhp2dnd6vmzFjBry8vAAAKpUKAQEBCA4O\nBvBXPc7U01XzxFy+jaUNkAw83uZxoezT0OWvWrVKkuuvMdanMaZ5fYo7LYf1mZCQgIiICMnkqZqO\nj49HVFQUAAjby3oRYfwhnUpKSujpp5+mzz//XJjXsWNHysjIICKi9PR06tSpU43XGTmWaIwxQFR2\nUTaNjR2rdVA3Q8llICvOKS7OKR45ZCSq/7bTaCUgIsL06dPh6OiIyMhIYf68efPQqVMnREREIDIy\nEsnJyVizZo3Ga5taCaj66Z5c72eMGUIyfQAnT57EwIED4e/vD4VCAQBYtmwZevXqhfHjx+P+/ftw\ncXFBbGwsVCrNDV5TawC47s8YE4NkrgPo378/KioqkJCQgEuXLuHSpUsYMWIEHBwccPDgQSQmJuLA\ngQM1Nv5yol5rbQhjn+4pVk5j45zi4pzikUNGQ/BgcBIQMzpG74HdGGNMLDwUhAlwzZ8xZgySKQEx\n3aoP8cAYY6bADUADGFoXbOwhHuRSv+Sc4uKc4pFDRkPo1QAUFBTg6tWruHbtGgoKCoydyexxzZ8x\nJgU6+wDy8vLw9ddfY9u2bcjMzETbtm1BRLh//z4cHR0xefJkzJ49G7a2tuKHMvM+AMYYMwbRrgMY\nMmQIJkxQaM04AAAZ3UlEQVSYgFGjRsHFxUXjsXv37mHnzp344YcfcPjw4YYl1hbKDBsA7vhljBmb\naJ3Ahw8fxuzZs2ts/AHAxcUF4eHhRtn4y0l96oKm7PiVS/2Sc4qLc4pHDhkNUWcfwJAhQ/Sax2rH\nY/szxqRGZwmoqKgIhYWFGDx4sEbrV1BQgMGDB9cYw1/UUGZYAsopzuHbOTLGjEq0PoBVq1Zh9erV\nSEtLg5ubmzDf2toaL774IubPn9/wtLpCmWEDwBhjxiZaH0BERASSk5Px2WefITk5Wfj3+++/49VX\nXxUlrNzVVRcM3xWO4KhghGwNQU6x6e59LJf6JecUF+cUjxwyGqLOPoBvvvmmxry+ffsaJYy54St+\nGWNSprME9OeffyItLQ2TJ09GTEwMiAgKhQIFBQWYOXMm9wHoIWRrCPYm7UWQWxBf9MUYMzrR+gC+\n/fZbREVF4ddff0VQUJAw39raGlOnTsXEiRMbnlZXKDNpALjjlzHWmOq97azrlmHbt2+v1y3GxKBH\nLEmQy23iOKe4OKe45JBTDhmJ6r/trPOm8C+88AJ++uknXLt2DWVlZcL8Dz74wID2ybzx1b6MMTmp\n834AM2bMQEVFBY4cOYLZs2dj+/bt6N27NzZv3my8UDItAfGtHRljpiT6/QDOnj2L7777Do6Ojli0\naBEuXLhg1A5gOeOrfRljclJnA2BnZwcAaN68Oe7duweFQoFbt24ZPZgcVD83WKrDPMvlHGbOKS7O\nKR45ZDREnX0AISEhePjwIebPnw9/f39YWFhg5syZjZFNdlQtVVz2YYzJhs4+gMjISPTr1w89evRA\n8+aV7UR+fj7KysqgUhl371aufQCMMWZK9d126jwCSE1NRUREBP73v//Bz88P/fv3R9++ffkqYABx\nccexZs0BPHrUHEldf4G9N8HTxY3P/GGMyYrOPoCVK1fi9OnTuHfvHpYtWwYHBwds2bIFvr6+6Nq1\na2NmlJS4uON44439OHDgIxw7Foy7xa1xJf83SQ/3IJf6JecUF+cUjxwyGqLOPoCioiI8fPgQubm5\nyM3NhZubG/z9/RsjmyStWXMAN29+/NeM0sozf+zyXPnMH8aYrOjsA5g9ezZ+//13KJVK9OrVC336\n9MGTTz4Je3t744eScB9AcPBiHDu2+K8ZLXOAZ8LRL7sjTh76p8lyMcaYaNcB3L59G48ePYKLiwvc\n3d3h7u5u9M5fOWjRokxzRrEK+DEWts0tTROIMcYMpLMB2L9/P86fP4/58+dDoVDg888/R1BQEJ5+\n+ukmPQzE668/jU6dFv7/VDwAoFOnf2DevGEmy1QXudQvOae4OKd45JDRELVeCGZhYQE/Pz+MHDkS\nI0eORL9+/ZCUlITVq1frtfBZs2ahbdu28PPzE+YtXrwYHh4eCAwMRGBgIPbt29ewd9DIQkMHwvvN\nRNi/2R62z0/GUyHvYPXqEQgNHWjqaIwxVi86+wBWr16N06dP48yZM2jevDn69u2Lfv36oW/fvujW\nrRuaNWtW58JPnDgBW1tbTJs2DZcvXwYALFmyBEqlEm+99ZbuUBLuAwB4zB/GmDSJdh1ASkoKxo0b\nh8jISI17AtfHgAEDkJKSUmO+lDfu+uAxfxhj5kBnCSgyMhKjR482eONfm3Xr1qFr166YMmUKHjx4\nIPryja1qzJ9F7RfJ4sIvudQvOae4OKd45JDREHVeByC2V199VehEXrx4MV5//XVER0fXeN6MGTPg\n5eUFAFCpVAgICEBwcDCAvz4MU00nnE3AXKe5QlZT56kzb0KCpPLomq4ilTy8PhtnWg7rMyEhQVJ5\nqqbj4+MRFRUFAML2sj7qvB9AQ6WkpGDUqFFCH4C6tLQ0DB48GNeuXdMMJfE+AMYYkyLR+gCMJT09\nHc7OzgCAn376Cb6+vo0dod74Tl+MMXNU5/0AYmJi4OXlBVtbWyiVSiiVSuEeAXWZOHEi+vbti2vX\nrsHT0xNbtmzB/Pnz0b17d3Tt2hVxcXFYu3Ztg9+EsV3Puo5jt47VGO+n+qG2VHFOcXFOcckhpxwy\nGqLOI4B3330X+/fvN2gAuO+//77GvFmzZtV7OabGZ/0wxsxRnX0AAwcOxPHjxxsrDwDp9QHkFOcg\nfFc4No7ayOUfxphk1XfbWWcD8MYbbyA9PR3PPvssrKyshD/ywgsvNCxpbaEk1gAwxpgciH5T+Nzc\nXLRo0QIHDhzA7t27sXv3buzatatBIc2FXOqCnFNcnFNccsgph4yGqLMPoOocU8YYY+ZFZwlo+fLl\nWLBgAebNm1fzRQoF1qxZY7xQEigB8amfjDG5Ee06AB8fHwBAz549oVAohPlEpDFtrqpO/QQqGwMe\n8I0xZnZIgqQQa2T0SMJiUNDGIMouytb6nKNHjzZuKANxTnFxTnHJIaccMhLVf9upsxN41qxZuHDh\ngs6G49y5c5g5c6YRmiRpqBrw7eDUg1z+YYyZJZ19AJcvX8Znn32Gs2fPonPnznB1dQUR4d69e7h2\n7Rr69u2Lt99+G926dRM/lAT6ABhjTG5Evw7g0aNHuHTpEm7dugWFQoH27duje/fuaNmyZYPD6gzF\nDQBjjNWb6NcBtGjRAk8++STGjx+PcePGoXfv3kbd+MuJXM4N5pzi4pzikkNOOWQ0RJ0NAGOMMfNk\n9PsBGMJUJSA+958xJmeil4CqZGVlISsry6BQcqFr2GfGGDNHdTYAFy9ehI+PDwIDAxEYGAhfX19c\nvHixMbI1uvoO+yyXuiDnFBfnFJcccsohoyHqbABmz56Nr776Crdv38bt27fx1VdfYfbs2Y2RrdHx\nuf+Msaakzj4APz+/Gvfz9ff3R2JiovFC8WmgjDFWb6LfE9jNzQ3Lli3DxIkTQUTYtm0bXF1dGxSS\nMcaY6el1T+Dk5GSEhobimWeewa1btxATE9MY2SRPLnVBzikuzikuOeSUQ0ZD6DwCyMvLw7p16/DH\nH3/A19cXX3zxhXBHMMYYY/Knsw/gueeeg1KpRP/+/bFv3z64uLjgq6++apxQjdQHwOf9M8bMiWhj\nAXXp0gVXr14FAJSVlSEgIABXrlwRJ2VdoRqpAQiOChbG/B/rM5bH/GeMyZpoF4JZW1sL/2/evDks\nLS0blkyC6nvef3VyqQtyTnFxTnHJIaccMhpCZx9AYmIilEqlMF1UVCRMKxQKPHz40PjpjCxmdAzC\nd4Vj46iNXP5hjDU5PBYQY4yZCaONBcQYY8y8cAPQAHKpC3JOcXFOcckhpxwyGoIbAMYYa6KM2gcw\na9YsxMXFwdnZWRhP6MGDBxg/fjzu378PV1dX/PDDD1CpNDtgjdkHwOf+M8bMlaT6AGbOnIl9+/Zp\nzFu0aBFCQ0ORmJiIkSNHYtGiRcaMUAOP+c8YY5WM2gAMGDAA9vb2GvP27NmDqVOnAgCmTJmCuLg4\nY0aooaHn/quTS12Qc4qLc4pLDjnlkNEQjd4HkJGRAUdHRwBAmzZtkJ6e3qh/n8f8Z4yxSnUOB20q\nM2bMgJeXFwBApVIhICAAwcHBAP5qjQ2ZVrVUYa7TXCScTRBleXKYrponlTxyn66aJ5U8cp+umieV\nPLqm1bNKIU9wcDDi4+MRFRUFAML2sj6MfiFYSkoKRo0aJXQCd+rUCefOnUObNm2QkZGBPn36ICkp\nSTMUXwjGGGP1JqlOYG1CQkIQHR0NAIiOjkZISEhjRxBN9T0DqeKc4uKc4pJDTjlkNIRRS0ATJ07E\nsWPHkJmZCU9PTyxduhRLlizB+PHjsWXLFri4uCA2lkfgZIwxU+CxgBhjzExIvgTEGGNMGppEAxC+\nKxzBUcEI2RqCnOIc0ZYrl7og5xQX5xSXHHLKIaMhmkQDwFf/MsZYTU2iDyBkawj2Ju1FkFsQXwDG\nGDNbot0T2JTEbgByinP4zl+MMbPHncBaqFqqEDs2VvSNv1zqgpxTXJxTXHLIKYeMhmgSDQBjjLGa\nmkQJiDHGmgIuATHGGNMLNwANIJe6IOcUF+cUlxxyyiGjISQ7HHRD8G0fGWOsbmbZBxAcFYxjt44B\nAMb6jEXsWB5wjjFm/rgPAOLe9pExxsyVWTYAjXXbR7nUBTmnuDinuOSQUw4ZDWGWfQBVF34xxhjT\nzSz7ABhjrCniPgDGGGN64QagAeRSF+Sc4uKc4pJDTjlkNAQ3AIwx1kRxHwBjjJkJ7gNgjDGmF7Np\nAIx139/ayKUuyDnFxTnFJYeccshoCLNpAPi+v4wxVj9m0wfA9/1ljDV1TfaewHzfX8ZYU9dkO4GN\ndd/f2silLsg5xcU5xSWHnHLIaAizaQAYY4zVj9mUgBhjrKmr77bTZKOBenl5wc7ODs2aNYOlpSXO\nnz9vqiiMMdYkmawEpFAoEB8fj0uXLsl24y+XuiDnFBfnFJcccsohoyFM2gfAZR7GGDMdk/UBdOzY\nESqVCmVlZQgPD8drr732VyjuA2CMsXqTTR/A2bNn4ezsjIyMDIwYMQJdunTB0KFD67WM8F3huJ51\nHTaWNogZHcPn/zPGWD2YrAFwdnYGADg5OWHMmDG4cOGCRgMwY8YMeHl5AQBUKhUCAgIQHBwM4K96\nXNXwD0gGwm6EIX5xvMbj1Z8v9nTVvMb6e4ZOr1q1Suv6k9p01Typ5OH12TjTclifCQkJiIiIkEye\nqun4+HhERUUBgLC9rBcygYKCAiooKCAiovz8fBo4cCD98ssvwuP6xhoZPZKwGBS0MYiyi7KNkrU2\nR48ebfS/aQjOKS7OKS455JRDRiL9t51VTNIHkJycjLCwMCgUChQWFmLChAlYunSp8Li+dSwe/oEx\nxv7SZMcCYoyxpq7JjgVkCuq1VinjnOLinOKSQ045ZDQENwCMMdZEcQmIMcbMBJeAGGOM6YUbgAaQ\nS12Qc4qLc4pLDjnlkNEQ3AAwxlgTJas+AB76gTHGdDPrPoCqoR/2Ju1F+K5wU8dhjDFZk1UDYGNp\nAwAIcgvCxlEbTZxGPnVBzikuzikuOeSUQ0ZDyKoBiBkdg7E+Y3Fw6kEu/zDGWAPJqg+AMcaYbmbd\nB8AYY0w83AA0gFzqgpxTXJxTXHLIKYeMhuAGgDHGmijuA2CMMTPBfQCMMcb0wg1AA8ilLsg5xcU5\nxSWHnHLIaAhuABhjrIniPgDGGDMT9d12NjdiFlHwAHCMMWYcki8BSXkAOLnUBTmnuDinuOSQUw4Z\nDSH5BkBqA8Axxpi5kHwfQE5xDsJ3hWPjqI1c/mGMsVrUtw9A8g0AY4wx/fCFYI1ILnVBzikuziku\nOeSUQ0ZDcAPAGGNNFJeAGGPMTHAJiDHGmF5M0gDs27cPfn5+8PHxwfLly00RQRRyqQtyTnFxTnHJ\nIaccMhqi0RuAR48e4ZVXXsG+ffuQmJiIH3/8EZcuXWrsGKJISEgwdQS9cE5xcU5xySGnHDIaotEb\ngHPnzsHX1xfu7u5o3rw5xo8fj7i4uBrPGz78PcTFHW/sePWSk5Nj6gh64Zzi4pzikkNOOWQ0RKM3\nAKmpqfD09BSmPTw8kJqaWuN5Bw58hDfe2C/5RoAxxuSq0RsAhUKh3xPfdsLNzHCsXXvQuIEaICUl\nxdQR9MI5xcU5xSWHnHLIaIhGPw30xIkTWL58OXbv3g0A+Oyzz1BSUoKFCxf+FcpBAWQ3ZirGGJO/\nTp06ISkpSe/nN3oDUFxcjC5duuDUqVNwdnZG3759sWHDBvTo0aMxYzDGWJPX6PcDaNmyJdavX4/h\nw4ejoqICU6dO5Y0/Y4yZgCSvBGaMMWZ8krsSWA4Xid25cwcDBw6En58fOnfujE8//dTUkWpVXl6O\nwMBAjBo1ytRRdMrJycHYsWPRvXt3dO3aFWfOnDF1pBoWLVqExx9/HF26dMGYMWNQWFho6kgAgFmz\nZqFt27bw8/MT5j148ADDhg2Dv78/hg8fLonTGLXlfOutt+Dj4wMfHx8888wzyMrKMmHCStpyVlm5\nciUsLCzw4MEDEyTTpCvn2rVr0b17d/j5+eGdd96pfSEkIcXFxeTl5UWpqalUWlpKQUFBdPHiRVPH\nquHevXt0+fJlIiLKy8ujxx57jBISEkycSreVK1fSpEmTaNSoUaaOotOYMWMoJiaGiIjKy8spNzfX\nxIk03bhxgzp06ECPHj0iIqJx48bRpk2bTJyq0vHjx+nixYvUrVs3Yd5rr71GkZGRREQUGRlJr7/+\nuqniCbTlPHLkCJWXlxMR0YIFCygiIsJU8QTachIR3b59m4YPH05eXl6UlZVlonR/0ZZz9+7dFBoa\nSqWlpURElJmZWesyJHUEoO9FYqbWtm1bdOvWDQBga2sLf39/pKWlmTiVdqmpqdizZw9eeuklyQ6w\nl5WVhYSEBEycOBEAYGFhATs7OxOn0uTg4ABLS0sUFBSgrKwMhYWFaN++valjAQAGDBgAe3t7jXl7\n9uzB1KlTAQBTpkyRxO9IW87BgwfDwqJyM9SvXz/cvXvXFNE0aMsJVB6tSOloX1vOTZs2YcGCBWje\nvLJ719HRsdZlSKoB0PciMSlJSUnBhQsX0L9/f1NH0erNN9/EZ599JvzIpOjGjRtwcnLCuHHj0K1b\nN0ybNg35+fmmjqXBwcEB8+fPR7t27eDm5gaVSoWhQ4eaOpZOGRkZwo+/TZs2SE9PN3Gium3cuBHP\nPfecqWNo9csvv8DDwwP+/v6mjlKrq1evYv/+/QgICECfPn1w+vTpWp8vqa2C3heJSUR+fj7Gjh2L\n1atXQ6lUmjpODbt374azszMCAwMlu/cPABUVFbhw4QLeeecdXLlyBQ4ODvjwww9NHUvDzZs3sWrV\nKqSkpCAtLQ35+fnYunWrqWOZjY8//hhWVlaYPHmyqaPUUFhYiE8++QRLliwR5kn191RRUYG8vDwk\nJCRgzZo1mDBhQq1ZJdUAeHh44M6dO8L0nTt3NI4IpKS0tBSjR4/GpEmTEBYWZuo4Wp0+fRo7d+5E\nhw4dMHHiRBw5cgTTpk0zdawaPD094e7ujieeeAIAMGbMGMkNvnX+/Hn07dsXjo6OaN68OV544QWc\nPHnS1LF0cnJyQmZmJoDKowFnZ2cTJ9Lt22+/RVxcnGQb1Js3byIlJQXdu3dHhw4dkJqaip49e0ry\nqMrT0xMvvPACAOCJJ56AlZUV7t+/r/P5kmoAnnjiCVy5cgV3795FaWkpYmNjMXLkSFPHqoGI8OKL\nL8LHxwdvvvmmqePo9Mknn+DOnTtITk7Gtm3b8NRTT+G7774zdawaPD090aZNG1y/fh0AcOjQIXTt\n2tXEqTR5e3vj7NmzKCoqAhHh0KFD8Pb2NnUsnUJCQhAdHQ0AiI6ORkhIiIkTabdv3z58+umn2Llz\nJ1q2bGnqOFr5+fnh/v37SE5ORnJyMjw8PHDx4kVJNqqhoaE4cuQIAOD69esoLCysPaeROqgNtmfP\nHvL19aWuXbvSJ598Yuo4Wp04cYIUCgV1796dAgICKCAggPbu3WvqWLWKj4+X9FlACQkJFBQURD4+\nPjRy5Eh68OCBqSPVsGjRIvL29qbHH3+cxo8fT0VFRaaOREREEyZMIFdXV7K0tCQPDw/asmULZWVl\n0dChQ8nPz4+GDRtG2dnZpo5ZI+fmzZvJ29ub2rVrJ/yOXnnlFVPHFHJaWVkJ61Ndhw4dJHEWkLac\nJSUlNGXKFPL19SVfX1/av39/rcvgC8EYY6yJklQJiDHGWOPhBoAxxpoobgAYY6yJ4gaAMcaaKG4A\nGGOsieIGgDHGmihuABhjrIniBoDJVrNmzRAYGIguXbogNDQUubm5Op+bkpKidXz36r744gtERUUB\nqBz///Dhww3OGRUVhXnz5hn8+sTERLz44osNzsFYddwAMNmysbHBpUuXcPXqVTg5OeHLL79s0PKI\nCJs3b8aUKVMAAEuWLMGQIUManLOhgxz6+/vj5s2bkhx7hskbNwDMLPTp0we3bt1q0DJOnTqFLl26\nCGOpz5gxAz/99BMAwMvLC4sXL0avXr3QuXNnXLlypcbri4qKMHHiRPj6+sLPzw/79+8XHktLS8Mz\nzzyDjh07IiIiQphva2uLBQsWwN/fH8OGDcO5c+fw1FNPoV27dvj555+F540cORLbt29v0PtjrDpu\nAJjslZeX48CBAw0eq/3kyZPCiKRA5Z571d67QqGAi4sLzp8/j4iICKxYsaLG6yMjI2FnZ4f//ve/\n2LFjB2bMmIHi4mIQERISEhAbG4v//e9/2LFjB1JSUgBUDjU8dOhQJCYmQqlU4oMPPsDhw4exe/du\nfPDBB8Kye/XqhePHjzfo/TFWHTcATLaKiooQGBgIV1dX3LlzB3PmzGnQ8m7fvg0XFxedj1fdrKRH\njx4aw5ZXOXXqlHBXM29vbzz22GO4cuUKFAoFhgwZAhsbG7Ro0QK+vr7CjY6srKwwbNgwAJWjTgYH\nB0OhUKBbt24af8PV1VVoNBgTCzcATLasra1x6dIl3Lp1CzY2Nvjll18avMzaxkZs0aIFgMrO54qK\nCr1eX3UEUfXa6q+3tLQU5ltYWMDKykr4v/rfICLZ3TCJSR83AEz2rK2tsWrVKixcuLBBd2pq3749\n7t27Z/DrBwwYgB9++AFA5U1Ebty4gW7duoly96g///xTMvcgZuaDGwAmW+p7xAEBAfD29kZsbKzO\n51+7dg2enp7Cv6oO3ir9+/fHr7/+qtff1bY3HhERgdzcXPj6+iIsLAzffvstWrRoofP51d9D9Wn1\n/58/fx4DBw6sMxtj9cH3A2Ds/xERevTogXPnzgmlGKkIDg5GbGysJO9CxeSLjwAY+38KhQKzZ8+W\n3L1pExMT4e3tzRt/Jjo+AmBm5fLlyzVufN+yZUucOXPGRIkYky5uABhjrIniEhBjjDVR3AAwxlgT\nxQ0AY4w1UdwAMMZYE8UNAGOMNVH/B1z6XURJsXa0AAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x43b9d10>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.11,Page number: 115"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current in branch B due to the voltage source of 36 V in branch A.\"\"\"\n",
"\n",
"\n",
"#Variable Declaration:\n",
"V_supply_a=36.0 #Supply voltage in the network shown in figure a(in Volts)\n",
"Req_a=2+ 1/((1.0/12)+(1.0/(3+1))) + 4 #Equivalent resistance of network shown in figure a(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"I_supply_a=V_supply_a/Req_a\n",
"I=I_supply_a*(12.0/(12+4))\n",
"V_supply_b=36.0\n",
"Req_b= 3+ 1.0/((1.0/12)+(1.0/(2+4))) + 1\n",
"I_supply_b=V_supply_b/Req_b\n",
"I_dash= I_supply_b*(12.0/(12+6))\n",
"R_tr=V_supply_a/I\n",
"\n",
"\n",
"#Result:\n",
"print \"The current I(in figure (a)) is %.2f A and the current I'(in branch A in figure (b)) is %.2f A.\" %(I,I_dash)\n",
"if(I==I_dash) : print \"As the two currents I and I' have the same value, the reciprocity theorem is established.\\n \"\n",
"else : print \"As the two currents I and I' have different values, the reciprocity theorem is not established.\\n \"\n",
"print \"The transfer resistance is %.2f Ohms.\" %(R_tr)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current I(in figure (a)) is 3.00 A and the current I'(in branch A in figure (b)) is 3.00 A.\n",
"As the two currents I and I' have the same value, the reciprocity theorem is established.\n",
" \n",
"The transfer resistance is 12.00 Ohms.\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.13,Page number: 119"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current using Thevenin's theorem.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R_L=20.0 #Load resistance(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\" KVL equation for the loop bacdeb, V_Th+50-20+10=0.\"\"\"\n",
"V_Th=-50.0-10.0+20.0\n",
"\"\"\"Shorting all the voltage sources.\"\"\"\n",
"R_Th=0.0\n",
"I3=V_Th/(R_L+R_Th)\n",
"\n",
"\n",
"#Result:\n",
"print \"The current I3 in the circuit is %.2f A.\" %(I3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current I3 in the circuit is -2.00 A.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.14,Page number: 120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current using Thevenin's theorem.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R_L=1.0 #Load resistance(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\" KVL equation for the loop bacdeb, V_Th+50-20+10=0.\"\"\"\n",
"V_Th=20.0-10.0-9.0\n",
"\"\"\"Shorting all the voltage sources.\"\"\"\n",
"R_Th=0.0\n",
"I2=V_Th/(R_L+R_Th)\n",
"\n",
"\n",
"#Result:\n",
"print \"The current I2 in the circuit is %.2f A.\" %(I2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current I2 in the circuit is 1.00 A.\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.15,Page number: 121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current using superposition theorem.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R=0.5 #Load resistance(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"I=15.0/(1+0.6)\n",
"I1=I*(1/(1+(R+1)))\n",
"I2=20/((2/3.0)+2)\n",
"I1_20=I2*(2.0/(2.0+(R+R)))\n",
"Inet=I1-I1_20\n",
"\n",
"\n",
"#Result:\n",
"print \"The current flowing through R from A to B is %.2f A.\" %(Inet) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current flowing through R from A to B is -1.25 A.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.16,Page number: 121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the voltage across the resistance using Thevenin's theorem.\"\"\"\n",
"\n",
"#Calculations:\n",
"\"\"\"The first step is to remove the 5 Ohms resistance.Then, find the open-circuit voltage Voc across AB. \n",
" Using nodal analysis,for node C we can write ((Voc-20)/2)+((Voc+10)/1)+((Voc-12)/4)=10.\"\"\"\n",
"Voc=(10+3)/(0.5+1+0.25)\n",
"V_Th=Voc\n",
"R_Th=1.0/((1.0/2.0)+(1.0)+(1/4.0))\n",
"V_AB=V_Th*(5.0/(5.0+R_Th))\n",
"\n",
"\n",
"#Result:\n",
"print \"The voltage across the 5 Ohms resistance is %.2f V.\" %(V_AB)\n",
"print \"Note:There is a calculation error in the textbook.Voc=7.43 V but not 1.74 V. Therefore V_AB=6.67 V.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The voltage across the 5 Ohms resistance is 6.67 V.\n",
"Note:There is a calculation error in the textbook.Voc=7.43 V but not 1.74 V. Therefore V_AB=6.67 V.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.17,Page number: 122"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current using Norton's theorem.\"\"\"\n",
"\n",
"#Calculations:\n",
"Isc=20.0/10.0\n",
"I_N=Isc\n",
"R_N=1.0/((1.0/10)+(1.0/10))\n",
"I=I_N*(R_N/(R_N+2.0))\n",
"\n",
"\n",
"#Result:\n",
"print \"The current through the 2 Ohms resistance when connected across terminals AB is %.2f A.\" %(I)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current through the 2 Ohms resistance when connected across terminals AB is 1.43 A.\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.18,Page number: 123"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finfing the power consumed by resistor using Norton's theorem.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R_L=2.0 #Resistance of load(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\"To determine I_N,short circuit the terminals xy and find the current Isc throgh this short circuit.\n",
"\n",
" Applying node-voltage analysis to determine the voltage at node 1,\n",
" \n",
" ((V1-12)/3)+(V1/2)=4;\"\"\"\n",
"\n",
"V1=(4.0+(12.0/3.0))/((1.0/3.0)+0.5)\n",
"Isc=V1/2.0\n",
"I_N=Isc\n",
"R_N=1.0/((1.0/(3.0+2.0))+(1.0/5.0))\n",
"I=I_N*(R_N/(R_N+R_L))\n",
"P=I*I*R_L\n",
"\n",
"\n",
"#Result:\n",
"print \"The power consumed by the 2 Ohms load reistor is %.3f W.\" %(P)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The power consumed by the 2 Ohms load reistor is 14.222 W.\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.19,Page number: 124"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the voltage across load.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R_L=5.0 #Load resistance(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"R_N=1.0/((1.0/20.0)+(1.0/(10.0+10.0)))\n",
"I_N=(65.0-10.0)/(10.0+10.0)\n",
"I_L=I_N*(R_N/(R_N+R_L))\n",
"V_L=I_L*R_L\n",
"\n",
"\n",
"#Result:\n",
"print \"The voltage across the load using Norton's theorem is %.2f V.\" %(V_L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The voltage across the load using Norton's theorem is 9.17 V.\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.20,Page number: 125 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the reading of voltmeter.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R=500e03 #Resistance across which voltmeter is connected(in Ohms)\n",
"Rm=10e06 #Internal resistance of voltmeter(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"V_a=10.0*(R/(R+800e03))\n",
"R_Th=1.0/((1/R)+(1/800e03))\n",
"V_Th=V_a\n",
"V_b=V_Th*(Rm/(Rm+R_Th))\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The reading of the voltmeter if it assumed to be ideal is %.2f V.\" %(V_a)\n",
"print \"(b)The reading of the voltmeter if it has an internal resistance of 10 M Ohms is %.2f V.\" %(V_b)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The reading of the voltmeter if it assumed to be ideal is 3.85 V.\n",
"(b)The reading of the voltmeter if it has an internal resistance of 10 M Ohms is 3.73 V.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.21,Page number: 125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the load resistance for receiving maximum power.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R_L=3e03 #Load resistance(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\"First, we remove R_L and then find Voc=V_Th. We transform the 5-mA current source into voltage source.\"\"\"\n",
"Voc=(60.0-40.0)*((6e03)/((6e03)+(12e03+18e03)))\n",
"V_Th=Voc\n",
"R_Th=1.0/((1.0/6e03)+(1.0/(12e03+18e03)))\n",
"Vab_b=V_Th*(R_L/(R_L+R_Th))\n",
"R_L_c=R_Th\n",
"\"\"\" The current required through 6 kilo Ohms resistor is 0.1 mA.\"\"\"\n",
"Vab_d=(0.1e-03)*(6e03)\n",
"V_30k=20-Vab_d\n",
"I_30k=V_30k/(30e03)\n",
"I_L=I_30k-(0.1e-03)\n",
"R_L_d=Vab_d/I_L\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The Thevenin's equivalent voltage is %.2f V and the Thevenin's resistance is %.2f kilo Ohms.\" %(V_Th,(R_Th/1000.0))\n",
"print \"(b)The Vab for R_L=3 kilo Ohms is %.3f V.\" %(Vab_b)\n",
"print \"(c)The value of R_L which receives maximum power from the circuit is %.2f kilo Ohms.\" %(R_L_c/1000.0)\n",
"print \"(d)The value of R_L which makes the current in the 6 kilo Ohms resistor to be 0.1 mA is %.3f kilo Ohms.\" %(R_L_d/1000.0) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The Thevenin's equivalent voltage is 3.33 V and the Thevenin's resistance is 5.00 kilo Ohms.\n",
"(b)The Vab for R_L=3 kilo Ohms is 1.250 V.\n",
"(c)The value of R_L which receives maximum power from the circuit is 5.00 kilo Ohms.\n",
"(d)The value of R_L which makes the current in the 6 kilo Ohms resistor to be 0.1 mA is 1.098 kilo Ohms.\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.22,Page number: 127"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the value of resistance.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"V=12.0 #Supply voltage(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\" To receive maximum power,the resistance R should be equal to the output resistance of the remaining circuit,which is same as \n",
" Thevenin's resistance.\"\"\"\n",
"R_Th=1.0/((1.0/2.0)+(1.0/6.0))\n",
"R=R_Th\n",
"\"\"\" Mesh equations to find loop currents I1 and I2, \n",
" \n",
" (8*I1)-(6*I2)=4 and -(6*I1)+(7.5*I2)=8. Solving these equations, we get I1=3.25 A. \"\"\"\n",
"I1=((4*7.5)+(8*6))/((8*7.5)-(6*6))\n",
"P=V*I1\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The value of R to receive maximum power from the circuit is %.2f Ohms.\" %(R)\n",
"print \"(b)The power supplied by the 12 V source is %.2f W.\" %(P) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The value of R to receive maximum power from the circuit is 1.50 Ohms.\n",
"(b)The power supplied by the 12 V source is 39.00 W.\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.23,Page number: 127"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current Is.\"\"\"\n",
"\n",
"#Calculations:\n",
"I1=12.0/(80.0+120)\n",
"\"\"\" I2=Is*(80/(80+120)); I1+I2=0;\"\"\"\n",
"Is=-I1/(80.0/(80+120))\n",
"\n",
"\n",
"#Result:\n",
"print \"The current Is such that the current through 120 Ohms resistor is zero is %.2f A.\" %(Is)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The current Is such that the current through 120 Ohms resistor is zero is -0.15 A.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.24,Page number: 128"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the Thevenin equivalent circuit.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"Vs=12.0 #Supply voltage(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\"The circuit has no independent source.So,the current I in the 12 Ohms resistor will be zero and hence the dependent voltage source\n",
" (8*I) will also be zero. Obviously,Thevenin's voltage V_Th=0 V. \"\"\"\n",
"V_Th=0.0\n",
"I=12.0/12.0\n",
"V=8*I\n",
"\"\"\"Applying KCL to node a,\"\"\"\n",
"Is=(12.0/12.0)+(12.0/6.0)+((12.0-8.0)/4.0)\n",
"R_Th=Vs/Is\n",
"\n",
"\n",
"#Result:\n",
"print \"The Thevenin's equivalent resistance is %.2f Ohms and the Thevenin's equivalent voltage is %.2f V.\" %(R_Th,V_Th)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Thevenin's equivalent resistance is 3.00 Ohms and the Thevenin's equivalent voltage is 0.00 V.\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|