1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 15: INDUCTION MOTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.1,Page number: 480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the synchronous speed of an induction motor and the frequency of rotor currents at standstill.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"P=6.0 #Number of poles \n",
"f=50.0 #Operating frequency of the induction motor(in Hertz)\n",
"s_no_load=0.01 #Slip at no-load \n",
"s_full_load=0.03 #Slip at full-load\n",
"\n",
"\n",
"#Calculations:\n",
"Ns=(120.0*f)/P\n",
"N_no_load=Ns*(1-s_no_load)\n",
"N_full_load=Ns*(1-s_full_load)\n",
"s_standstill=1.0\n",
"fr_standstill=s_standstill*f\n",
"fr_full_load=s_full_load*f\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The synchronous speed is %d rpm.\" %(Ns) \n",
"print \"(b)The no-load speed is %d rpm.\" %(N_no_load) \n",
"print \"(c)The full-load speed is %d rpm.\" %(N_full_load) \n",
"print \"(d)The frequency of rotor-currents at standstill is %.2f Hz.\" %(fr_standstill)\n",
"print \"(e)The frequency of rotor-currents at full-load is %.2f Hz.\" %(fr_full_load)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The synchronous speed is 1000 rpm.\n",
"(b)The no-load speed is 990 rpm.\n",
"(c)The full-load speed is 970 rpm.\n",
"(d)The frequency of rotor-currents at standstill is 50.00 Hz.\n",
"(e)The frequency of rotor-currents at full-load is 1.50 Hz.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.2,Page number: 480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the frequency of rotor-current in an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"P=12.0 #Number of poles \n",
"f=50.0 #Operating frequency of induction motor(in Hertz)\n",
"N=485.0 #Speed of the motor(in rpm) \n",
"\n",
"\n",
"#Calculations:\n",
"Ns=(120.0*f)/P\n",
"s=(Ns-N)/Ns\n",
"fr=s*f\n",
"\n",
"\n",
"#Result:\n",
"print \"The frequency of the rotor-currents is %.2f Hz.\" %(fr) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The frequency of the rotor-currents is 1.50 Hz.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.3,Page number: 481 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the full-load slip and speed of an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"fr=2.0 #Frequency of thr rotoremf at full-load(in Hertz) \n",
"f=50.0 #Frequency of the supply(in Hertz)\n",
"P=6.0 #Number of poles \n",
"\n",
"\n",
"#Calculations:\n",
"s=fr/f\n",
"Ns=(120*f)/P\n",
"N=Ns*(1-s)\n",
"\n",
"\n",
"#Result:\n",
"print \"The slip at full-load is %.2f percent.\" %(s*100)\n",
"print \"The full-load speed is %d rpm.\" %(N) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The slip at full-load is 4.00 percent.\n",
"The full-load speed is 960 rpm.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.4,Page number: 481 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the synchronous speed and the rotor frequency of an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"f=50.0 #Frequency of the supply(in Hertz) \n",
"P=4.0 #Number of poles\n",
"\n",
"\n",
"#Calculations:\n",
"Ns=(120*f)/P\n",
"s1=0.04\n",
"N1=Ns*(1-s1) \n",
"N2=600\n",
"s2=(Ns-N2)/Ns\n",
"fr=s2*f\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The synchronous speed is %d rpm.\" %(Ns)\n",
"print \"(b)The speed of the rotor when the slip is 0.04 is %d rpm.\" %(N1)\n",
"print \"(c)The rotor frequency when the speed of the rotor is 600 rpm is %.2f Hz.\" %(fr)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The synchronous speed is 1500 rpm.\n",
"(b)The speed of the rotor when the slip is 0.04 is 1440 rpm.\n",
"(c)The rotor frequency when the speed of the rotor is 600 rpm is 30.00 Hz.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.5,Page number: 484 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the rotor current of a three-phase induction motor.\"\"\"\n",
"\n",
"from math import sqrt,pow,acos,radians,degrees\n",
"\n",
"#Variable Declaration:\n",
"E_L=100.0 #Induced EMF(in Volts)\n",
"R2=0.05 #Resistance of rotor windings(in Ohms) \n",
"X_20=0.1 #Standstill reactance of rotor windings(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"E_20=E_L/sqrt(3.0)\n",
"s_a=0.04\n",
"E2_a=s_a*E_20\n",
"Z2_a=sqrt((R2*R2)+pow((s_a*X_20),2))\n",
"I2_a=E2_a/Z2_a\n",
"angle_a=acos(R2/Z2_a)\n",
"s_b=1.0\n",
"E2_b=s_b*E_20\n",
"Z2_b=sqrt((R2*R2)+pow((s_b*X_20),2))\n",
"I2_b=E2_b/Z2_b\n",
"angle_b=acos(R2/Z2_b)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)At 4% slip : \"\n",
"print \" The rotor current is %.2f A.\" %(round(I2_a,2))\n",
"print \" The phase difference between the rotor voltage and the rotor current is %.2f degrees.\" %(round(degrees(angle_a),2))\n",
"print \"\\n(b)At 100% slip :\"\n",
"print \" The rotor current is %.2f A.\" %(round(I2_b,2))\n",
"print \" The phase difference between the rotor voltage and the rotor current is %.2f degrees.\" %(round(degrees(angle_b),2))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)At 4% slip : \n",
" The rotor current is 46.04 A.\n",
" The phase difference between the rotor voltage and the rotor current is 4.57 degrees.\n",
"\n",
"(b)At 100% slip :\n",
" The rotor current is 516.40 A.\n",
" The phase difference between the rotor voltage and the rotor current is 63.43 degrees.\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.6,Page number: 485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the developed power,air-gap power,rotor copper loss,and stator loss in an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"HP=746.0 #Value of Horse-Power(in Watts) \n",
"f=50.0 #Operating frequency of the induction motor(in Hertz)\n",
"N=1470.0 #Speed of the motor(in rpm)\n",
"P=4.0 #Number of poles\n",
"phase=3.0 #Number of phases \n",
"effi=87.5e-02 #Efficiency of the motor at full-load \n",
"\n",
"\n",
"#Calculations:\n",
"Po=5.0*HP\n",
"Pin=Po/effi\n",
"total_loss=Pin-Po\n",
"mech_loss=0.05*total_loss\n",
"elec_loss=total_loss-mech_loss\n",
"dev_pow=Po+mech_loss\n",
"Ns=(120*f)/P\n",
"s=(Ns-N)/Ns\n",
"Pg=dev_pow/(1-s)\n",
"P_R=s*Pg\n",
"P_S=Pin-Pg\n",
"\n",
"\n",
"#Result:\n",
"print \"The developed power is %.2f W.\" %(round(dev_pow,2))\n",
"print \"The air-gap power is %.2f W.\" %(round(Pg,2))\n",
"print \"The rotor copper loss is %.2f W.\" %(round(P_R,2))\n",
"print \"The stator loss is %.2f W.\" %(round(P_S,2))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The developed power is 3756.64 W.\n",
"The air-gap power is 3833.31 W.\n",
"The rotor copper loss is 76.67 W.\n",
"The stator loss is 429.55 W.\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.7,Page number: 490 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the rotor speed,the stator current,the power factor and the efficiency of an induction motor. \"\"\"\n",
"\n",
"from math import sqrt,cos,degrees\n",
"from cmath import rect,phase\n",
"\n",
"#Variable Declaration:\n",
"V_L=400.0 #Operating voltage of the induction motor(in Volts)\n",
"P=4.0 #Number of poles\n",
"f=50.0 #Operating frequency of the motor(in Hertz)\n",
"s=0.02 #Slip at rated load \n",
"rot_loss=0.34e03 #Rotational losses(in Watts)\n",
"R1=0.641 #Impedance per phase on the stator side(in Ohms) \n",
"X1=1.106 #Impedance per phase on the stator side(in Ohms) \n",
"R2_eq=0.332 #Impedance per phase on the stator side(in Ohms)\n",
"X_20_eq=0.464 #Impedance per phase on the stator side(in Ohms) \n",
"Xg=26.3 #Impedance per phase on the stator side(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"V1_mod=V_L/sqrt(3)\n",
"V1=rect(V1_mod,0)\n",
"Ns=(120*f)/P\n",
"N=Ns*(1-s)\n",
"V_Th=V1*((Xg/(R1+(X1+Xg)*1j))*1j)\n",
"Z_Th=((Xg*(R1+X1*1j))/(R1+(X1+Xg)*1j))*1j\n",
"R_L_eq=((1-s)/s)*R2_eq\n",
"I1=V_Th/(Z_Th +(R2_eq+X_20_eq*1j)+R_L_eq)\n",
"angle=phase(I1)\n",
"pf=cos(angle)\n",
"Po=(3*abs(I1)*abs(I1)*R_L_eq)-rot_loss\n",
"Pi=3*abs(V1)*abs(I1)*cos(phase(I1))\n",
"effi=(Po/Pi)*100\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The rotor speed is %d rpm.\" %(round(N,0))\n",
"print \"(b)The stator current is %.2f A at a phase angle of %.2f degrees.\" %(abs(I1),degrees(phase(I1))) \n",
"print \"(c)The power factor is %.3f lagging.\" %(pf)\n",
"print \"(d)The output power is %.2f W.\" %(Po)\n",
"print \" The input power is %.2f W.\" %(Pi)\n",
"print \"(e)The efficiency of the motor is %.2f percent.\" %(effi)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The rotor speed is 1470 rpm.\n",
"(b)The stator current is 12.84 A at a phase angle of -3.78 degrees.\n",
"(c)The power factor is 0.998 lagging.\n",
"(d)The output power is 7703.00 W.\n",
" The input power is 8874.78 W.\n",
"(e)The efficiency of the motor is 86.80 percent.\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.8,Page number: 495"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the standstill rotor reactance of an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"f=50.0 #Operating frequency of induction motor(in Hertz)\n",
"P=6.0 #Number of poles\n",
"N=940.0 #Speed of motor(in rpm)\n",
"R2=0.1 #Resistance per phase(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"Ns=(120*f)/P\n",
"s=(Ns-N)/Ns\n",
"X_20=R2/s\n",
"\n",
"\n",
"#Result:\n",
"print \"The standstill rotor resistance is %.3f Ohms.\" %(X_20)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The standstill rotor resistance is 1.667 Ohms.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.9,Page number: 498"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the full-load slip of an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"P_motor=6.0 #Number of poles in the induction motor\n",
"N_motor=960.0 #Full-load speed of the induction motor(in rpm)\n",
"P_alt=4.0 #Number of poles in the alternator\n",
"N_alt=1500.0 #Speed of the alternator(in rpm)\n",
"\n",
"\n",
"#Calculations:\n",
"f=(N_alt*P_alt)/120.0\n",
"Ns=(120.0*f)/P_motor\n",
"s=(Ns-N_motor)/Ns\n",
"\n",
"\n",
"#Result:\n",
"print \"The full-load slip of the motor is %.2f percent.\" %(s*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The full-load slip of the motor is 4.00 percent.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.10,Page number: 498"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the rotor input,motor input and the efficiency of an induction motor.\"\"\"\n",
"\n",
"from math import pi\n",
"\n",
"#Variable Declaration:\n",
"P=4.0 #Number of poles in the induction motor\n",
"useful_tor=160.0 #Useful torque(in Newton-metre)\n",
"s=0.05 #Slip\n",
"P_S=1000.0 #Stator losses(in Watts)\n",
"Pm=500.0 #Frictional and windage losses(in Watts)\n",
"f=50.0 #Frequency of induction motor(in Hertz)\n",
"#Calculations:\n",
"Ns=(120.0*f)/P\n",
"N=(1-s)*Ns\n",
"Po=(2*pi*useful_tor*N)/60.0\n",
"Pd=Po+Pm\n",
"Pg=Pd/(1-s)\n",
"Pin=Pg+P_S\n",
"effi=Po/Pin\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The rotor input is %.4f kW.\" %(Pg/1000.0)\n",
"print \"(b)The motor input is %.4f W.\" %(Pin)\n",
"print \"(c)The efficiency is %.4f percent.\" %(effi*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The rotor input is 25.6591 kW.\n",
"(b)The motor input is 26659.0570 W.\n",
"(c)The efficiency is 89.5609 percent.\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.11,Page number: 499"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the slip of an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"effi=0.9 #Efficiency of the induction motor\n",
"Po=50e03 #Load driven by the motor(in Watts)\n",
"\n",
"\n",
"#Calculations:\n",
"Pin=Po/effi\n",
"P_tot=Pin-Po\n",
"\"\"\"The no-load losses comprise of the stator iron loss(Pi) and mechanical losses(Pm)\n",
" (since the stator and rotor copper losses are negligible).These two losses are independent of the load.\n",
" \n",
" Given,the mechanical loss,Pm=(no-load loss)/3.0=((Pi+Pm)/3.0).\n",
" \n",
" Therefore,Pm=(Pi/2.0).\n",
" \n",
" Total loss=(Stator copper loss)+(Stator iron loss)+(Rotor copper loss)+(Mechanical loss).\"\"\"\n",
"Pi=(2.0/7.0)*P_tot\n",
"P_R=Pi\n",
"Pm=Pi/2.0\n",
"Pd=Po+Pm\n",
"Pg=Pd+P_R\n",
"s=P_R/Pg\n",
"\n",
"\n",
"#Result:\n",
"print \"The slip of the induction motor is %.2f percent.\" %(s*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The slip of the induction motor is 3.03 percent.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.12,Page number: 499"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the rotor current in an induction motor.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"V2=100.0 #Induced emf between slip ring terminals(in Volts)\n",
"R2=0.4 #Resistance per phase of star-connected rotor windings(in Ohms)\n",
"s=0.04 #Slip of rotor\n",
"\n",
"\n",
"#Calculations:\n",
"E20=V2/sqrt(3.0)\n",
"\"\"\"The rotor reactance X2=(s*X20) is negligible for small values of sand hence cam be ignored.\"\"\"\n",
"I2=(s*E20)/R2\n",
"\n",
"\n",
"#Result:\n",
"print \"The rotor current is %.3f A.\" %(I2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rotor current is 5.774 A.\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.13,Page number: 499"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the number of poles and the slip of an induction motor.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"N=285.0 #Full-load speed of an induction motor(in rpm)\n",
"f=50.0 #Frequency of supply(in Hertz)\n",
"P_R=250.0 #Original rotor losses(in Watts)\n",
"\n",
"\n",
"#Calculations:\n",
"P=(120.0*f)/N\n",
"\"There has to be even number of poles,such that Ns>N.Thus,the actual number of poles is 20.\"\"\"\n",
"P=round((P-1),0)\n",
"Ns=(120.0*f)/P\n",
"s=(Ns-N)/Ns\n",
"\"\"\"For small values of s,the reactance of (s*X20) is much smaller than the resistance R2,hence\n",
" torque is directly proportional to (s/R2).\n",
" \n",
" It means that the to keep the torque same,the (s/R2) ratio should remain the same.If R2 is doubled,then s also has to be \n",
" doubled.\"\"\" \n",
"s_new=2*s\n",
"\"\"\"Since the full-load current remains the same,on doubling the rotor resistance,the copper loss(I*I*R) is also doubled.\"\"\"\n",
"P_R_new=2*P_R\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The number of poles is %d.\" %(P)\n",
"print \"(b)The slip is %.2f percent.\" %(s*100)\n",
"print \"(c)The slip for full-load torque if the rotor resistance is doubled is %.2f percent.\" %(s_new*100)\n",
"print \"(d)The rotor copper losses with added rotor resistance is %.2f W.\" %(P_R_new)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The number of poles is 20.\n",
"(b)The slip is 5.00 percent.\n",
"(c)The slip for full-load torque if the rotor resistance is doubled is 10.00 percent.\n",
"(d)The rotor copper losses with added rotor resistance is 500.00 W.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.14,Page number: 500"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the slip and the power output of an induction motor when external resistances are inserted in each rotor phase.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"s=0.02 #Full-load slip of the induction motor\n",
"Po=500 #Power rating of the motor(in HorsePower)\n",
"R2=0.25 #Resistance per phase of the rotor(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"R2_new=2.0+R2\n",
"s_new=(s/R2)*(R2_new)\n",
"\"\"\"If Ns is the synchronous speed of the motor,then the speed of the rotor before inserting external resistance,\n",
" N=(1-s)*Ns;\n",
" \n",
" The speed of the rotor after inserting external resistance is N_new=(1-s_new)*Ns;\"\"\"\n",
"\n",
"Po_new=((1-s_new)/(1-s))*Po\n",
" \n",
"\n",
"#Result:\n",
"print \"The new slip is %.2f percent.\" %(s_new*100)\n",
"print \"The new power output is %.2f HP.\" %(Po_new)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The new slip is 18.00 percent.\n",
"The new power output is 418.37 HP.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.15,Page number: 500"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the full-load speed of an induction motor.\"\"\"\n",
"\n",
"from sympy import *;\n",
"\n",
"#Variable Declaration:\n",
"P=4.0 #Number of poles in the induction motor\n",
"f=50.0 #Rated frequency of the induction motor(in Hertz)\n",
"\n",
"\n",
"#Calculations:\n",
"\"\"\" Starting torque(tor_st)=1.6*(tor_fl) where tor_fl=full-load torque;\n",
" Maximum torque(tor_max)=2.0*(tor_fl);\n",
" \n",
" tor_st/tor_max=0.8;\n",
" \n",
" (tor_st/tor_max)=(2*s_m)/((s_m*s_m)+1))\n",
" \n",
" (s_m*s_m)-(2.5*s_m)+1=0 is a quadratic equation whose roots are 2 and 0.5 \n",
" \n",
" s_m has to be less than 1. Therefore, s_m=0.5; \n",
" \n",
" Similarly,\n",
" (tor_fl)/(tor_max)=0.5; \n",
" \n",
" (tor_fl)/(tor_max)=(2*s_fl*s_m)/((s_m*s_m)+(s_fl*s_fl))\n",
" \n",
" Substituting s_m=0.5,we get a quadratic equation,\n",
" \n",
" (s_fl*s_fl)-(s_fl)+0.125=0 whose roots are 0.8535,0.1465.\n",
" \n",
" s_fl=0.1465 as s_fl should be less than s_m. \"\"\"\n",
"\"\"\"Finding the roots:\"\"\"\n",
"s_m,s_fl= symbols('s_m s_fl')\n",
"a=solve(s_m**2-(2.5*s_m)+1.0,s_m)\n",
"b=solve(s_fl**2-s_fl+0.125, s_fl)\n",
"Ns=(120*f)/P\n",
"Nfl=Ns*(1-b[0])\n",
"Nm=Ns*(1-a[0])\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The full-load speed is %.2f rpm.\" %(Nfl)\n",
"print \"(b)The speed at maximum torque is %.2f rpm.\" %(Nm)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The full-load speed is 1280.33 rpm.\n",
"(b)The speed at maximum torque is 750.00 rpm.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.16,Page number: 501"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the rotor copper loss and the gross torque for an induction motor.\"\"\"\n",
"\n",
"from math import pi\n",
"\n",
"#Variable Declaration:\n",
"s=0.04 #Full-load slip\n",
"P=4.0 #Number of poles\n",
"f=50.0 #Frequency of the induction motor(in Hertz)\n",
"Po=18.65e03 #Power output(in Watts)\n",
"\n",
"\n",
"#Calculations:\n",
"Pm=0.025*Po\n",
"Pd=Pm+Po\n",
"P_R=Pd*(s/(1-s))\n",
"Pg=P_R/s\n",
"Ns=(120*f)/P\n",
"N=Ns*(1-s)\n",
"sh_tor=Po/(2*pi*(N/60.0))\n",
"gross_tor=Pd/(2*pi*(N/60.0))\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The rotor copper loss is %.2f W.\" %(P_R)\n",
"print \"(b)The rotor input is %.2f W.\" %(Pg)\n",
"print \"(c)The output(shaft) torque is %.2f Nm.\" %(sh_tor)\n",
"print \"(d)The gross torque is %.2f Nm.\" %(gross_tor)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The rotor copper loss is 796.51 W.\n",
"(b)The rotor input is 19912.76 W.\n",
"(c)The output(shaft) torque is 123.68 Nm.\n",
"(d)The gross torque is 126.77 Nm.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.17,Page number: 501"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the rotor current and the rotor power factor for an induction motor.\"\"\"\n",
"\n",
"from math import sqrt,pow,cos,atan\n",
"\n",
"#Variable Declaration:\n",
"P=4.0 #Number of poles in the induction motor\n",
"E1=1100.0 #Line voltage(in Volts) \n",
"f=50.0 #Operating frequency of the motor(in Hertz)\n",
"K=1.0/3.8 #Transformation ratio\n",
"R2=0.012 #Rotor resistance per phase(in Ohms)\n",
"X20=0.25 #Rotor stanstill reactance per phase(in Ohms) \n",
"N=1440.0 #Full-load speed of the motor(in rpm)\n",
"\n",
"\n",
"#Calculations:\n",
"Ns=(120.0*f)/P\n",
"s=(Ns-N)/Ns\n",
"E20=K*E1\n",
"Z20=sqrt((R2*R2)+(X20*X20))\n",
"Z2=sqrt((R2*R2)+(s*X20*s*X20))\n",
"I20=E20/Z20\n",
"pf_20=cos(atan(X20/R2))\n",
"I2=(s*E20)/Z2\n",
"pf=R2/Z2\n",
"I1=100.0/sqrt(3.0)\n",
"I_20=I1/K\n",
"Z2_rot=E20/I_20\n",
"r=sqrt((Z2_rot*Z2_rot)-(X20*X20))-R2\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The rotor current at starting with slip-rings shorted is %.2f A.\" %(I20)\n",
"print \"(b)The rotor power factor at starting with slip-rings shorted is %.5f,lagging.\" %(pf_20)\n",
"print \"(c)The rotor current while running at full load with slip-rings shorted is %.3f A.\" %(I2)\n",
"print \"(d)The rotor power factor while running at full-load with slip-rings shorted is %.5f,lagging.\" %(pf)\n",
"print \"(e)The external rotor resistance is %.4f Ohms.\" %(r)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The rotor current at starting with slip-rings shorted is 1156.56 A.\n",
"(b)The rotor power factor at starting with slip-rings shorted is 0.04794,lagging.\n",
"(c)The rotor current while running at full load with slip-rings shorted is 741.266 A.\n",
"(d)The rotor power factor while running at full-load with slip-rings shorted is 0.76822,lagging.\n",
"(e)The external rotor resistance is 1.2835 Ohms.\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|