summaryrefslogtreecommitdiff
path: root/Basic_Electrical_Engineering/Chapter14.ipynb
blob: 8d806accfa1c70528f70a2b11b78760e2e33ed1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14: ALTERNATORS AND SYNCHRONOUS MOTORS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.1,Page number: 433"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the number of poles on the generator if the frequency of the generated voltage is decreased.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "f=60                  #Frequency of ac-generator(in Hertz)\n",
      "P=6                   #Number of poles\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Ns=(120*f)/P\n",
      "f=20\n",
      "P=(120*f)/Ns\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The speed of rotation of the generator is %d rpm.\" %(Ns)\n",
      "print \"If the frequency is reduced to 20Hz,the required number of poles is %d.\" %(P)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The speed of rotation of the generator is 1200 rpm.\n",
        "If the frequency is reduced to 20Hz,the required number of poles is 2.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2,Page number: 441\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the distribution factor for a machine.\"\"\"\n",
      "\n",
      "from math import radians,degrees,sin\n",
      "\n",
      "#Variable Declaration:\n",
      "slots=9                      #Number of slots\n",
      "slot_angle=radians(180/9)    #Slot angle(in radians)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "q_a=120.0/degrees(slot_angle)\n",
      "k_d_a=sin(q_a*(slot_angle/2.0))/(q_a*sin(slot_angle/2.0))\n",
      "q_b=60.0/degrees(slot_angle)\n",
      "k_d_b=sin(q_b*(slot_angle/2.0))/(q_b*sin(slot_angle/2.0))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The distribution factor for a machine for a three phase winding with 120 degrees phase group is %.3f.\" %(k_d_a)\n",
      "print \"(b)The distribution factor for a machine for a three phase winding with 60 degrees phase group is %.3f.\" %(k_d_b)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The distribution factor for a machine for a three phase winding with 120 degrees phase group is 0.831.\n",
        "(b)The distribution factor for a machine for a three phase winding with 60 degrees phase group is 0.960.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3,Page number: 441"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the speed,the generated emf per phase,and the line emf of a three-phase alternator.\"\"\"\n",
      "\n",
      "from math import radians,degrees,sqrt,sin\n",
      "\n",
      "#Variable Declaration:\n",
      "phase=3                #Number of phases\n",
      "f=50                   #Frequency rating(in Hertz)\n",
      "P=20                   #Number of poles \n",
      "slots=180              #Number of slots on the stator\n",
      "cond_per_slot=8        #Number of conductors per slot\n",
      "flux=25e-03            #Flux per pole(in Weber) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Z=slots*cond_per_slot\n",
      "T=(Z/2)/phase\n",
      "Ns=(120*f)/P\n",
      "k_p=1\n",
      "slots_per_pole=slots/P\n",
      "slot_angle=radians(180/slots_per_pole)\n",
      "q=slots_per_pole/phase\n",
      "k_d=sin(q*(slot_angle/2))/(q*sin(slot_angle/2))\n",
      "E=4.44*f*flux*T*k_p*k_d\n",
      "line_emf=sqrt(3.0)*E\n",
      "\n",
      "#Result:\n",
      "print \"(a)The speed of the alternator is %d rpm.\" %(round(Ns,0))\n",
      "print \"(b)The rms value of generated EMF per phase is %.2f V.\" %(E)\n",
      "print \"(c)The line EMF is %.2f V.\" %(line_emf)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The speed of the alternator is 300 rpm.\n",
        "(b)The rms value of generated EMF per phase is 1278.45 V.\n",
        "(c)The line EMF is 2214.34 V.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4,Page number: 446\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the voltage regulation for full-load for a three-phase alternator.\"\"\"\n",
      "\n",
      "from math import sqrt,cos,acos \n",
      "\n",
      "#Variable Declaration:\n",
      "P=600e06              #Power rating of the alternator(in VA) \n",
      "V_L=22e03             #Rated terminal voltage(in Volts) \n",
      "sync_imp=0.16         #Synchronous impedance per phase(in Ohms)\n",
      "res_phase=0.014       #Resistance per phase(in Ohms) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "I_L=P/(sqrt(3)*V_L)\n",
      "Iph=I_L\n",
      "V=V_L/sqrt(3)\n",
      "Vz=Iph*sync_imp\n",
      "theta=acos(res_phase/sync_imp)\n",
      "pf=0.8\n",
      "phi=acos(pf)\n",
      "alpha=theta-phi\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "vol_reg_a=(E-V)/V\n",
      "pf=1\n",
      "phi=acos(pf)\n",
      "alpha=theta-phi\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "vol_reg_b=(E-V)/V\n",
      "pf=0.8\n",
      "phi=acos(pf)\n",
      "alpha=theta+phi\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "vol_reg_c=(E-V)/V\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)For a power factor of 0.8 lagging:\"\n",
      "print \"The voltage regulation for full load is %.2f percent.\" %(vol_reg_a*100)\n",
      "print \"(b)For unity power factor:\"\n",
      "print \"The voltage regulation for full load is %.2f percent.\" %(vol_reg_b*100)\n",
      "print \"(c)For a power factor of 0.8 leading:\"     \n",
      "print \"The voltage regulation for full load is %.2f percent.\" %(vol_reg_c*100)\n",
      "print \"\\nNote:The voltage regulation for leading power-factor load is negative.\"\n",
      "print \"It means that on removing the load, the terminal voltage decreases.\"   "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)For a power factor of 0.8 lagging:\n",
        "The voltage regulation for full load is 14.20 percent.\n",
        "(b)For unity power factor:\n",
        "The voltage regulation for full load is 3.64 percent.\n",
        "(c)For a power factor of 0.8 leading:\n",
        "The voltage regulation for full load is -8.90 percent.\n",
        "\n",
        "Note:The voltage regulation for leading power-factor load is negative.\n",
        "It means that on removing the load, the terminal voltage decreases.\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.5,Page number: 450\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the synchronous reactance per phase and the voltage regulation for a three-phase star-connected alternator.\"\"\"\n",
      "\n",
      "from math import acos,sqrt,cos\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=900               #Open-circuit voltage(line to line)(in Volts)\n",
      "V_L_rated=3.3e03      #Rated voltage of the alternator(in Volts)\n",
      "I_f=100               #Full-load current(in Amperes)\n",
      "R=0.9                 #Armature Resistance(in Ohm/phase)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "V_oc=V_L/sqrt(3)\n",
      "I_sc=I_f\n",
      "sync_imp=V_oc/I_sc\n",
      "sync_rea=sqrt((sync_imp*sync_imp)-(R*R))\n",
      "theta=acos(R/sync_imp)\n",
      "V=V_L_rated/sqrt(3)\n",
      "Vz=I_f*sync_imp\n",
      "pf=0.8\n",
      "phi=acos(pf)\n",
      "alpha=theta-phi\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "vol_reg_a=(E-V)/V\n",
      "pf=0.8\n",
      "phi=acos(pf)\n",
      "alpha=theta+phi\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "vol_reg_b=(E-V)/V\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The synchronous reactance per phase is %.3f Ohms.\" %(sync_rea)\n",
      "print \"(a) For a power factor of 0.8 lagging:\"\n",
      "print \"The voltage regulation for full load is %.2f percent\" %(vol_reg_a*100)\n",
      "print \"(b) For a power factor of 0.8 leading:\"\n",
      "print \"The voltage regulation for full load is %.2f percent.\" %(vol_reg_b*100)\n",
      "print \"\\nNote: The voltage regulation for leading power-factor load is negative.\"\n",
      "print \"It means that on removing the load, the terminal voltage decreases.\"\n",
      "    "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The synchronous reactance per phase is 5.118 Ohms.\n",
        "(a) For a power factor of 0.8 lagging:\n",
        "The voltage regulation for full load is 21.34 percent\n",
        "(b) For a power factor of 0.8 leading:\n",
        "The voltage regulation for full load is -9.03 percent.\n",
        "\n",
        "Note: The voltage regulation for leading power-factor load is negative.\n",
        "It means that on removing the load, the terminal voltage decreases.\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.6,Page number: 455\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the angle of retard of a synchronous motor.\"\"\"\n",
      "\n",
      "from math import sqrt,acos,cos,pi,asin,sin,degrees\n",
      "from cmath import phase\n",
      "\n",
      "#Variable Declaration:\n",
      "Po=9e03               #Power rating of synchronous motor(in Watts)  \n",
      "V_L=400               #Voltage rating of synchronous motor(in Watts)\n",
      "Zs=0.4+3*1j           #Synchronous impedance per phase(in Ohms)  \n",
      "pf=0.8                #Power factor(leading) \n",
      "effi=0.9              #Efficiency of the motor\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Pin=Po/effi\n",
      "I_L=Pin/(sqrt(3)*V_L*pf)\n",
      "I=I_L\n",
      "phi=acos(pf)\n",
      "mod_Zs=abs(Zs)\n",
      "theta=phase(Zs)\n",
      "V=V_L/sqrt(3)\n",
      "Er=I*mod_Zs\n",
      "E=sqrt((V*V)+(Er*Er)+(2*V*Er*cos(pi-(theta+phi))))\n",
      "E_L=sqrt(3)*E\n",
      "angle_retard=asin((Er*sin(theta+phi))/E)\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The angle of retard of the rotor is %.2f degrees.\" %(degrees(angle_retard))\n",
      "print \"The excitation emf E to which the motor has to be excited to give a full-load output at 0.8 leading power factor is %.2f V.\" %(E_L)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The angle of retard of the rotor is 10.47 degrees.\n",
        "The excitation emf E to which the motor has to be excited to give a full-load output at 0.8 leading power factor is 453.81 V.\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.7,Page number: 459"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the line emf generated by the alternator.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "S=24.0                #Number of slots in the alternator\n",
      "C=12.0                #Number of conductors per slot\n",
      "flux=0.1              #Flux per pole(in Weber)\n",
      "P=4.0                 #Number of poles in the alternator\n",
      "Ns=1500.0             #Synchronous speed of the alternator(in rpm)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Zph=S*C/3.0\n",
      "T=Zph/2.0\n",
      "S_pole=S/P\n",
      "slot_ang=180.0/S_pole\n",
      "q=S_pole/3.0\n",
      "kd=sin((q*radians(slot_ang)/2))/(q*sin(radians(slot_ang/2)))\n",
      "f=(P*Ns)/120.0\n",
      "kp=1.0\n",
      "E=4.44*flux*f*T*kp*kd\n",
      "E_L=sqrt(3.0)*E\n",
      "         \n",
      "         \n",
      "#Result:\n",
      "print \"The line emf generated when the alternator runs at 1500 rpm is %.2f V.\" %(E_L)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The line emf generated when the alternator runs at 1500 rpm is 1782.78 V.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.8,Page number: 460"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the net emf induced in the 6 coil in series constituting the alternator winding.\"\"\"\n",
      "\n",
      "from math import radians,sin\n",
      "\n",
      "#Variable Declaration:\n",
      "q=6.0                 #Number of slots per pole per phase\n",
      "angle=30.0            #Electrical angle between two consecutive slotss(in degrees) \n",
      "e=10.0                #Emf of each coil(in Volts)   \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "kd=sin(q*(radians(angle/2.0)))/(q*sin(radians(angle/2.0)))\n",
      "arith_sum=6*e\n",
      "Er=kd*arith_sum\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The net emf induced in the six coils in series is %.3f V.\" %(round(Er,3)) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The net emf induced in the six coils in series is 38.637 V.\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.9,Page number: 460"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the number of poles and the current rating of an alternator.\"\"\"\n",
      "\n",
      "from math import sqrt,pi\n",
      "\n",
      "#Variable Declaration:\n",
      "N=120.0               #Speed of the alternator(in rpm)\n",
      "f=50.0                #Frequency of the alternator(in Hertz)\n",
      "VA=100e06             #VA rating of the alternator(in Volt-Ampere)\n",
      "pf=1.0                #Power factor\n",
      "V_L=11e03             #Line voltage(in Volts)\n",
      "effi=0.97             #Efficiency of the alternator \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "P=(120.0*f)/N\n",
      "Po=VA*pf\n",
      "I_L=VA/(sqrt(3.0)*V_L)\n",
      "Pin=Po/effi\n",
      "tor=Pin/(2*pi*N/60.0)\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The number of poles is %d.\" %(P)\n",
      "print \"(b)The current rating is %.2f A.\" %(I_L)\n",
      "print \"(c)The input power is %.2f MW.\" %(round((Pin/1000000),2))\n",
      "print \"(d)The prime-mover torque applied to the genrator shaft is %e Nm.\" %(tor)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The number of poles is 50.\n",
        "(b)The current rating is 5248.64 A.\n",
        "(c)The input power is 103.09 MW.\n",
        "(d)The prime-mover torque applied to the genrator shaft is 8.203863e+06 Nm.\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.10,Page number: 460"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the percentage regulation for a load.\"\"\"\n",
      "\n",
      "from math import atan,radians,acos\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=11e03             #Line voltage of the star-connected alternator(in Volts)\n",
      "VA=800e03             #Power rating of the alternator(in Volt-Amperes)\n",
      "Rs=1.5                #Resistance per phase(in Ohms)\n",
      "Xs=25.0               #Synchronous reactance(in Ohms)\n",
      "pf=0.8                #Leading power factor\n",
      "Po=600e03             #Output power(in Watts)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Vph=V_L/sqrt(3.0)\n",
      "V=Vph\n",
      "Iph=Po/(sqrt(3.0)*V_L*pf)\n",
      "Zs=sqrt((Rs*Rs)+(Xs*Xs))\n",
      "theta=atan(Xs/Rs)\n",
      "Vz=Iph*Zs\n",
      "pf_ang=acos(pf)\n",
      "alpha=theta+pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "reg=(E-V)/V\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The percentage regulation is %.3f per cent.\" %(reg*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The percentage regulation is -7.641 per cent.\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.11,Page number: 461"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the full-load voltage regulation of the alternator.\"\"\"\n",
      "\n",
      "from math import atan,acos\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=6e03              #Line voltage of the alternator(in Volts)\n",
      "VA=6000e03            #Power rating of the alternator(in Volt-Amperes)\n",
      "R=0.2                 #Winding resistance per phase(in Ohms)\n",
      "pf=0.8                #Lagging power factor\n",
      "V_L_OC=480.0          #Line voltage in open-circuit test(in Volts)\n",
      "I_f_OC=10.0           #Field current in open-circuit test(in Amperes)\n",
      "I_L_SC=105.0          #Line current in short-circuit test(in Amperes)\n",
      "I_f_SC=5.0            #Field current in short-circuit test(in Amperes) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "\"\"\"In the short-circuit test,the currents are small compared to the full-load current.\"\"\"\n",
      "V=V_L/sqrt(3.0)\n",
      "I=VA/(3*V)\n",
      "V_ph_OC=V_L_OC/sqrt(3.0)\n",
      "\"\"\"Since the field current of 5 A gives an armature current of 105 A,a field current of 10 A will give an armature \n",
      "   current of (105*2)=210 A.\"\"\"\n",
      "I_ph=I_L_SC*2\n",
      "Zs=V_ph_OC/I_ph\n",
      "Xs=sqrt((Zs*Zs)-(R*R))\n",
      "theta=atan(Xs/R)\n",
      "Vz=I*Zs\n",
      "pf_ang=acos(pf)\n",
      "alpha=theta-pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "reg=(E-V)/V\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The full-load voltage regulation of the alternator at 0.8 lagging power factor is %.2f per cent.\" %(reg*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The full-load voltage regulation of the alternator at 0.8 lagging power factor is 16.73 per cent.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.12,Page number: 462"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the terminal voltage of the generator.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "f=50.0                #Frequency rating of the generator(in Hertz)\n",
      "Z_p=96.0              #Number of conductors per phase\n",
      "flux=0.1              #Flux per pole(in Webers)\n",
      "Xs=5.0                #Synchronous reactance per phase(in Ohms)\n",
      "kd=0.96               #Distribution factor for the stator winding\n",
      "Z_L=10.0              #Load impedance(in Ohms)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Zs=1j*Xs\n",
      "kp=1.0\n",
      "T=Z_p/2.0\n",
      "E=4.44*f*flux*kp*kd*T\n",
      "V=E/(1+(Zs/Z_L))\n",
      "V_L=sqrt(3.0)*abs(V)\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The terminal voltage of the generator is %.2f V.\" %(V_L)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The terminal voltage of the generator is 1584.79 V.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.13,Page number: 462"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the percentage change of voltage.\"\"\"\n",
      "\n",
      "from math import atan,radians,acos\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=6.6e03            #Line voltage of the star-connected alternator(in Volts)\n",
      "VA=1500e03            #Power rating of the alternator(in Volt-Amperes)\n",
      "Rs=0.5                #Resistance per phase(in Ohms)\n",
      "Xs=5.0                #Synchronous reactance(in Ohms)\n",
      "pf=0.8                #Lagging power factor\n",
      "\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Vph=V_L/sqrt(3.0)\n",
      "V=Vph\n",
      "Iph=VA/(3.0*Vph)\n",
      "Zs=sqrt((Rs*Rs)+(Xs*Xs))\n",
      "theta=atan(Xs/Rs)\n",
      "Vz=Iph*Zs\n",
      "pf_ang=acos(pf)\n",
      "alpha=theta-pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "reg=(E-V)/V\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The percentage change in voltage is %.3f per cent.\" %(reg*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The percentage change in voltage is 12.432 per cent.\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14,Page number: 463"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the terminal voltage and load regulation.\"\"\"\n",
      "\n",
      "from math import atan,radians,acos,asin\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=6599.0            #Line voltage of the star-connected alternator(in Volts)\n",
      "Rs=0.5                #Resistance per phase(in Ohms)\n",
      "Xs=5.0                #Synchronous reactance(in Ohms)\n",
      "I=130.0               #Full-load current(in Amperes)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "E=V_L/sqrt(3.0)\n",
      "Zs=Rs+1j*Xs\n",
      "theta=atan(Xs/Rs)\n",
      "Vz=I*abs(Zs)\n",
      "pf=0.8\n",
      "pf_ang=acos(pf)\n",
      "alpha=theta-pf_ang\n",
      "tor_ang=asin((Vz*sin(alpha))/E)\n",
      "V_a=(E*cos(tor_ang))-(Vz*cos(alpha))\n",
      "reg_a=(E-V_a)/V_a\n",
      "pf=0.6\n",
      "pf_ang=acos(pf)\n",
      "alpha=theta+pf_ang\n",
      "beta=pi-alpha\n",
      "tor_ang=asin((Vz*sin(beta))/E)\n",
      "V_b=(E*cos(tor_ang))+(Vz*cos(beta))\n",
      "reg_b=(E-V_b)/V_b\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The terminal voltage when the power factor is 0.8 lagging is %.2f V.\" %(V_a)\n",
      "print \"   The load regulation is %.2f per cent.\" %(reg_a*100)    \n",
      "print \"(b)The terminal voltage when the power factor is 0.6 leading is %.2f V.\" %(V_b)\n",
      "print \"   The load regulation is %.2f per cent.\" %(reg_b*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The terminal voltage when the power factor is 0.8 lagging is 3337.45 V.\n",
        "   The load regulation is 14.16 per cent.\n",
        "(b)The terminal voltage when the power factor is 0.6 leading is 4265.21 V.\n",
        "   The load regulation is -10.67 per cent.\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.15,Page number: 464"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the percentage load regulation.\"\"\"\n",
      "\n",
      "from math import acos,atan\n",
      "\n",
      "#Variable Declration:\n",
      "VA=1.5e06            #Power rating of the synchronous generator(in Volt-Amperes)\n",
      "V_L=11e03            #Line voltage(in Volts)\n",
      "Rs=1.2               #Armature resistance(in Ohms)\n",
      "Xs=25.0              #Synchronous reactance per phase(in Ohms)\n",
      "P_L=1.4375e06        #Load to be delivered(in Volt-Amperes)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "V=V_L/sqrt(3.0)\n",
      "I=P_L/(3*V)\n",
      "Zs=sqrt((Rs*Rs)+(Xs*Xs))\n",
      "Vz=I*Zs\n",
      "pf=0.8\n",
      "pf_ang=acos(pf)\n",
      "theta=atan(Xs/Rs)\n",
      "alpha=theta-pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "reg_a=(E-V)/V\n",
      "alpha=theta+pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "reg_b=(E-V)/V\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The percentage load regulation for a power factor of 0.8 lagging is %.2f per cent.\" %(reg_a*100)\n",
      "print \"(b)The percentage load regulation for a power factor of 0.8 leading is %.2f per cent.\" %(reg_b*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The percentage load regulation for a power factor of 0.8 lagging is 21.15 per cent.\n",
        "(b)The percentage load regulation for a power factor of 0.8 leading is -13.12 per cent.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.16,Page number: 465"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the torque angle of the alternator.\"\"\"\n",
      "\n",
      "from math import acos,degrees\n",
      "\n",
      "#Variable Declaration:\n",
      "R=0.5                 #Effective resistance per phase of the alternator(in Ohms)\n",
      "V_L=2200.0            #Line voltage of the alternator(in Volts)\n",
      "I_FL=200.0            #Full-load current(in Amperes)\n",
      "If=30.0               #Field current(in Amperes)\n",
      "V_L_oc=1100.0         #Line-to-line voltage on open circuit(in Volts)\n",
      "pf=0.8                #Lagging power factor     \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Zs=V_L_oc/(sqrt(3.0)*I_FL)\n",
      "theta=acos(R/Zs)\n",
      "Vz=I_FL*Zs\n",
      "V=V_L/sqrt(3.0)\n",
      "pf_ang=acos(pf)\n",
      "alpha=theta-pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "Po=V*I_FL*pf\n",
      "tor_ang=theta-acos((Po+(V*V*cos(theta)/Zs))*(Zs/(E*V)))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The torque angle of the alternator is %.2f degrees.\" %(degrees(tor_ang))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The torque angle of the alternator is 14.35 degrees.\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.17,Page number: 465"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"\"Finding the synchronising power of the alternator.\"\"\"\n",
      "\n",
      "from math import acos\n",
      "\n",
      "#Variable Declaration:\n",
      "P=6.0                 #Number of poles\n",
      "VA=3e06               #Power rating of the alternator(in Volt-Amperes)\n",
      "Ns=1000.0             #Speed of operation of the alternator(in rpm)\n",
      "V_L=3.3e03            #Line voltage of the load(in Volts)\n",
      "pf=0.8                #Lagging power factor\n",
      "\n",
      "#Calculations:\n",
      "V=V_L/sqrt(3.0)\n",
      "I=VA/(sqrt(3.0)*V_L)\n",
      "IXs=0.25*V\n",
      "Xs=IXs/I\n",
      "rotor_dis=radians(1*(P/2.0))\n",
      "Vz=I*Xs\n",
      "theta=pi/2\n",
      "pf_ang=acos(0.8)\n",
      "alpha=theta-pf_ang\n",
      "E=sqrt((V*V)+(Vz*Vz)+(2*V*Vz*cos(alpha)))\n",
      "Psy=(3*E*V*sin(rotor_dis))/(Xs)\n",
      "tor=(3*Psy)/(2*pi*Ns/60)\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The synchronising power is %.2f kW.\" %(Psy/1000)\n",
      "print \"(b)The synchronising torque per mechanical degree is %.2f kNm.\" %(tor/1000)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The synchronising power is 733.08 kW.\n",
        "(b)The synchronising torque per mechanical degree is 21.00 kNm.\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.18,Page number: 466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the armature current and power factor.\"\"\"\n",
      "\n",
      "from math import radians,degrees\n",
      "from cmath import rect,phase\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=2300.0            #Line voltage of the winding(in Volts)\n",
      "f=50.0                #Operating frequency of the synchronous motor(in Hertz)\n",
      "Psh=205.0             #Power delivered by the motor(in Horse Power)\n",
      "ang=15.0              #Power angle(in degrees)\n",
      "Xs=11.0               #Synchronous reactance(in Ohms)\n",
      "effi=0.90             #Efficiency of the motor\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "V=V_L/sqrt(3.0)\n",
      "Psh=Psh*746.0\n",
      "Pd=Psh/effi\n",
      "E=(Pd*Xs)/(3.0*V*sin(radians(ang)))\n",
      "I=(rect(V,0)-rect(E,radians(-ang)))/(1j*Xs)\n",
      "pf=cos(phase(I))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The excitation voltage per phase is %.2f V per phase.\" %(E)\n",
      "print \"(b)The armature current is %.2f A at a phase angle of %.2f degrees.\" %(abs(I),degrees(phase(I)))\n",
      "print \"(c)The power factor is %.4f leading.\" %(pf)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The excitation voltage per phase is 1812.83 V per phase.\n",
        "(b)The armature current is 57.44 A at a phase angle of 42.05 degrees.\n",
        "(c)The power factor is 0.7426 leading.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.19,Page number: 466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the line current and the power factor.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=6600.0            #Line voltage(in Volts)\n",
      "Xs=20.0               #Synchronous reactance per phase(in Ohms)\n",
      "Pin=915e03            #Power consumed by the motor(in Watts)\n",
      "E_L=8942.0            #Induced line emf per phase(in Volts)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "V=V_L/sqrt(3.0)\n",
      "E=E_L/sqrt(3.0)\n",
      "I_cos=Pin/(sqrt(3.0)*V_L)\n",
      "BN=Xs*I_cos\n",
      "NA=sqrt((E*E)-(BN*BN))\n",
      "NO=NA-V\n",
      "Er=sqrt((NO*NO)+(BN*BN))\n",
      "I_L=Er/Xs\n",
      "pf=I_cos/I_L\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The line current is %.2f A.\" %(I_L)\n",
      "print \"(b)The power factor is %.4f leading.\" %(pf) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The line current is 97.05 A.\n",
        "(b)The power factor is 0.8247 leading.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.20,Page number: 467"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the power factor when the load on the motor increases.\"\"\"\n",
      "\n",
      "from math import acos,asin\n",
      "\n",
      "#Variable Declaration:\n",
      "V_L=6600.0            #Line voltage(in Volts)\n",
      "Xs=15.0               #Synchronous reactance per phase(in Ohms)\n",
      "Pin=500e03            #Power consumed by the motor(in Watts)\n",
      "pf=0.8                #Leading power factor\n",
      "Pin_new=800e03        #New Input power(in Watts)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "V=V_L/sqrt(3.0)\n",
      "Zs=Xs\n",
      "I_L=Pin/(sqrt(3.0)*V_L*pf)\n",
      "Er=I_L*Zs\n",
      "pf_ang=acos(pf)\n",
      "alpha=(pi/2)-pf_ang\n",
      "E=sqrt((V*V)+(Er*Er)+(2*V*Er*cos(alpha)))\n",
      "I1_cos=Pin_new/(sqrt(3.0)*V_L)\n",
      "sin_tor=(Pin_new*Xs)/(E*V)\n",
      "AN=V*sin_tor\n",
      "NB=E-(V*cos(asin(sin_tor)))\n",
      "Er1=sqrt((AN*AN)+(NB*NB))\n",
      "I1=Er1/Xs\n",
      "pf=I1_cos/I1\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The power factor when the load on the motor increases is %.4f leading.\" %(pf)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The power factor when the load on the motor increases is 0.3229 leading.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.21,Page number: 469"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the power factor and kVA rating of the synchronous motor.\"\"\"\n",
      "\n",
      "from math import atan,acos\n",
      "\n",
      "#Variable Declaration:\n",
      "Si=500e03             #Load supplied by the three-phase system(in Volt-Amperes)\n",
      "pf_i=0.5              #Lagging power factor of three-phase system\n",
      "Po=100.0              #Load supplied by the synchronous motor(in Horse-Power)\n",
      "pf_t=0.9              #Overall lagging power factor \n",
      "effi=0.87             #Efficiency of the synchronous motor\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Pi=Si*pf_i\n",
      "Qi=Si*sin(acos(pf_i))\n",
      "Ps=(Po*746)/effi\n",
      "Pt=Pi+Ps\n",
      "St=Pt/pf_t\n",
      "Qt=St*sin(acos(pf_t))\n",
      "Qs=Qt-Qi\n",
      "pf_ang=atan(Qs/Ps)\n",
      "pf_s=cos(pf_ang)\n",
      "Ss=sqrt((Ps*Ps)+(Qs*Qs))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The power faactor of the synchronous motor is %.2f leading.\" %(pf_s)\n",
      "print \"(b)The kVA rating of the synchronous motor is %.2f kVA.\" %(Ss/1000.0)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The power faactor of the synchronous motor is 0.30 leading.\n",
        "(b)The kVA rating of the synchronous motor is 283.67 kVA.\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}