1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11: RESONANCE IN AC CIRCUITS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1,Page number: 315"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the resonant frequency,quality factor,voltage across each element in a series RLC circuit.\"\"\"\n",
"\n",
"from math import sqrt,pi,pow\n",
"\n",
"#Variable Declaration:\n",
"R=12.0 #Resistance of resistor(in Ohms)\n",
"L=0.15 #Self-inductance of inductor(in Henry)\n",
"C=100e-06 #Capacitance of capacitor(in Farads) \n",
"V=100.0 #Voltage(rms) of ac source(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"resonant_freq=1/(2.0*pi*sqrt(L*C))\n",
"I_max=V/R\n",
"freq_c=(sqrt((1.0/(L*C))-(0.5*pow((R/L),2))))/(2.0*pi)\n",
"freq_l=1.0/(sqrt((L*C)-(0.5*pow((R*C),2)))*2*pi)\n",
"cap_rea=1.0/(2.0*pi*freq_l*C)\n",
"ind_rea=2.0*pi*round(freq_l,2)*L\n",
"Q=cap_rea/R\n",
"Vr=V\n",
"Vl=Q*V\n",
"Vc=Vl\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The Resonant frequency(at which the circuit current becomes maximum) is %.2f Hz.\" %(resonant_freq)\n",
"print \"(b)The maximum current supplied by the source is %.2f A.\" %(I_max)\n",
"print \"(c)The frequency at which voltage across the capacitor is maximum is %.2f Hz.\" %(freq_c)\n",
"print \"(d)The frequency at which voltage across the inducttor is maximum is %.2f Hz.\" %(freq_l)\n",
"print \"(e)The inductive reactance is %.2f Ohms.\" %(ind_rea)\n",
"print \"(f)The capacitive reactance is %.2f Ohms.\" %(cap_rea)\n",
"print \"(g)The quality factor of the circiut is %.2f.\" %(Q)\n",
"print \"(h)The voltage drop across resistor is %.2f V.\" %(Vr)\n",
"print \" The voltage drop across inductor is %.2f V.\" %(Vl)\n",
"print \" The voltage drop across capacitor is %.2f V.\" %(Vc) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The Resonant frequency(at which the circuit current becomes maximum) is 41.09 Hz.\n",
"(b)The maximum current supplied by the source is 8.33 A.\n",
"(c)The frequency at which voltage across the capacitor is maximum is 40.10 Hz.\n",
"(d)The frequency at which voltage across the inducttor is maximum is 42.12 Hz.\n",
"(e)The inductive reactance is 39.70 Ohms.\n",
"(f)The capacitive reactance is 37.79 Ohms.\n",
"(g)The quality factor of the circiut is 3.15.\n",
"(h)The voltage drop across resistor is 100.00 V.\n",
" The voltage drop across inductor is 314.91 V.\n",
" The voltage drop across capacitor is 314.91 V.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2,Page number: 316"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the capacitance value to give resonance in a series RLC circuit. \"\"\"\n",
"\n",
"from math import pi,sqrt,pow\n",
"\n",
"#Variable Declaration:\n",
"res_freq=50.0 #Resonant frequency(in Hertz)\n",
"L=0.5 #Self-inductance of inductor(in Henry)\n",
"R=4.0 #Resistance of resistor(in Ohms)\n",
"V=100.0 #Voltage of the supply(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"C=1/(pow((2*pi*res_freq),2)*L)\n",
"I_max=V/R\n",
"V_L=I_max*(2*pi*res_freq*L)\n",
"V_C=V_L\n",
"Q=(2.0*pi*res_freq*L)/R\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The capacitance to give resonance is %e F.\" %(C)\n",
"print \"(b)The voltage across the inductor is %.2f V.\" %(V_L)\n",
"print \" The voltage across the capacitor is %.2f V.\" %(V_C)\n",
"print \"(c)The quality factor of the circuit is %.2f.\" %(Q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The capacitance to give resonance is 2.026424e-05 F.\n",
"(b)The voltage across the inductor is 3926.99 V.\n",
" The voltage across the capacitor is 3926.99 V.\n",
"(c)The quality factor of the circuit is 39.27.\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3,Page number: 317 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the inductance,the circuit current and the voltage across the capacitor under resonance.\"\"\"\n",
"\n",
"from math import pi,pow\n",
"\n",
"#Variable Declaration:\n",
"res_freq=175e03 #Resonant frequency(in Hertz) \n",
"V=0.85 #Voltage applied(in Volts)\n",
"Q=50.0 #Quality factor of the coil\n",
"C=320e-012 #Capacitance of the capacitor(in Farads)\n",
"\n",
"\n",
"#Calculations:\n",
"L=1/(pow((2*pi*res_freq),2)*C)\n",
"ind_rea=2*pi*res_freq*L\n",
"R=ind_rea/Q\n",
"Io=V/R\n",
"Vc=Q*V\n",
"\n",
"\n",
"#Result:\n",
"print \"The value of inductance is %e H.\" %(L)\n",
"print \"The circuit current is %e A.\" %(Io)\n",
"print \"The voltage across the capacitor under resonance is %.2f V.\" %(Vc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of inductance is 2.584724e-03 H.\n",
"The circuit current is 1.495398e-02 A.\n",
"The voltage across the capacitor under resonance is 42.50 V.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4,Page number: 317"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the current at the resonant frequency and the energy stored by inductor.\"\"\"\n",
"\n",
"from math import pow,pi\n",
"\n",
"#Variable Declaration:\n",
"res_freq=5e03 #Resonant frequency(in Hertz)\n",
"L=1e-03 #Self-inductance of the inductor(in Henry)\n",
"V=120.0 #Voltage of the supply(in Volts)\n",
"R=2.0 #Resistance of the coil(in Ohms)\n",
"\n",
"\n",
"#Calculations:\n",
"C=1/(pow((2*pi*res_freq),2)*L)\n",
"I_max=V/R\n",
"\"\"\" U=0.5*L*I*I=L*Irms*Irms\"\"\"\n",
"U=L*I_max*I_max\n",
"\n",
"\n",
"#Result:\n",
"print \"The required value of capacitance is %e F.\" %(C)\n",
"print \"(a)The current at the resonance frequency is %.2f A.\" %(I_max)\n",
"print \"(b)The maximum instantaneous energy is %.2f J.\" %(U)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required value of capacitance is 1.013212e-06 F.\n",
"(a)The current at the resonance frequency is 60.00 A.\n",
"(b)The maximum instantaneous energy is 3.60 J.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5,Page number: 318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the resonance frequency and the quality factor for the overall circuit.\"\"\"\n",
"\n",
"from math import sqrt,pi\n",
"\n",
"#Variable Declaration:\n",
"R1=0.51 #Resistor of the resistor-1(in Ohms) \n",
"R2=1.3 #Resistor of the resistor-2(in Ohms) \n",
"R3=0.24 #Resistor of the resistor-3(in Ohms)\n",
"L1=32e-03 #Self-inductance of the inductor-1(in Henry)\n",
"L2=15e-03 #Self-inductance of the inductor-2(in Henry)\n",
"C1=25e-06 #Capacitance of the capacitor-1(in Farads)\n",
"C2=62e-06 #Capacitance of the capacitor-2(in Farads)\n",
"\n",
"\n",
"#Calculations:\n",
"Req=R1+R2+R3\n",
"Leq=L1+L2\n",
"Ceq=(C1*C2)/(C1+C2)\n",
"res_freq=1/(2*pi*sqrt(Leq*Ceq))\n",
"Q=(sqrt(Leq/Ceq))/Req\n",
"Q1=(2*pi*res_freq*L1)/R1\n",
"Q2=(2*pi*res_freq*L2)/R2\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The resonance frequency is %.2f Hz.\" %(res_freq)\n",
"print \"(b)The quality factor of the overall circuit is %.2f.\" %(Q)\n",
"print \"(c)The quality factor of coil-1 is %.2f.\" %(Q1)\n",
"print \"(d)The quality factor of coil-2 is %.2f.\" %(Q2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The resonance frequency is 173.93 Hz.\n",
"(b)The quality factor of the overall circuit is 25.05.\n",
"(c)The quality factor of coil-1 is 68.57.\n",
"(d)The quality factor of coil-2 is 12.61.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6,Page number: 320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the half-power frequencies of a series ac circuit.\"\"\"\n",
"\n",
"from math import pow,sqrt\n",
"\n",
"#Variable Declaration:\n",
"bandwidth=75e03 #Bandwidth of the resonant circuit(in Hertz) \n",
"\n",
"\n",
"#Calculations:\n",
"pro=pow((150e03),2)\n",
"sum=sqrt(pow(bandwidth,2)+(4*pro))\n",
"f2=(sum+bandwidth)/2.0\n",
"f1=(sum-bandwidth)/2.0\n",
"\n",
"\n",
"#Result:\n",
"print \"Lower Half-power frequency is %e Hz.\" %(f1)\n",
"print \"Upper Half-power frequency is %e Hz.\" %(f2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Lower Half-power frequency is 1.171165e+05 Hz.\n",
"Upper Half-power frequency is 1.921165e+05 Hz.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.7,Page number: 324"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the line current,quality factor and the dynamic impedance of a series-parallel ac circuit.\"\"\"\n",
"\n",
"from math import pi,sqrt,pow\n",
"\n",
"#Variable Declaration:\n",
"L=200e-06 #Self-inductance of the inductor coil(in Henry) \n",
"res_freq=1e06 #Resonant frequency(in Hertz)\n",
"R=20.0 #Resistance of the coil(in Ohms)\n",
"Rs=8e03 #Series resistance(in Ohms)\n",
"V=230.0 #Voltage(rms) of the supply(in Volts) \n",
"\n",
"\n",
"#Calculations:\n",
"C=1/(pow((2*pi*res_freq),2)*L)\n",
"XL=2*pi*res_freq*L\n",
"Q=XL/R\n",
"Zo=L/(C*R)\n",
"Z=Zo+Rs\n",
"I=V/Z\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The value of capacitance to cause resonance is %e F.\" %(C)\n",
"print \"(b)The Q factor of the circuit is %.5f.\" %(Q)\n",
"print \"(c)The dynamic impedance of the parallel resonant circuit is %.2f Ohms.\" %(Zo)\n",
"print \"(d)The total line current is %e A.\" %(I) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The value of capacitance to cause resonance is 1.266515e-10 F.\n",
"(b)The Q factor of the circuit is 62.83185.\n",
"(c)The dynamic impedance of the parallel resonant circuit is 78956.84 Ohms.\n",
"(d)The total line current is 2.644990e-03 A.\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.8,Page number: 325"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the resonant frequency,Q-factor and bandwidth of a practical parallel resonant circuit.\"\"\"\n",
"\n",
"from math import pow,sqrt,pi\n",
"\n",
"#Variable Declaration:\n",
"R=150.0 #Resistance of the coil(in Ohms)\n",
"L=0.24 #Self-inductance of the coil(in Henry)\n",
"C=3e-06 #Capacitance of the capacitor(in Farads)\n",
"\n",
"\n",
"#Calculations:\n",
"res_freq=(sqrt(1-((R*R*C)/L)))/(2*pi*sqrt(L*C))\n",
"Q=(2*pi*res_freq*L)/R\n",
"BW=res_freq/Q\n",
"\n",
"\n",
"#Result:\n",
"print \"The resonant frequency is %.2f Hz.\" %(res_freq)\n",
"print \"The quality factor is %.2f.\" %(Q)\n",
"print \"The bandwidth is %.2f Hz.\" %(BW)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resonant frequency is 159.02 Hz.\n",
"The quality factor is 1.60.\n",
"The bandwidth is 99.47 Hz.\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.9,Page number: 326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the source frequency and the current supplied by the source.\"\"\"\n",
"\n",
"from math import sqrt,pi,pow,degrees\n",
"from cmath import phase\n",
"\n",
"#Variable Declaration:\n",
"V=125.0 #Voltage of the source(in Volts)\n",
"C=20.5e-06 #Capacitance of the capacitor(in Farads)\n",
"R=1.06 #Resistance of the coil(in Ohms)\n",
"L=25.4e-03 #Inductance of the coil(in Henry)\n",
"\n",
"\n",
"#Calculations:\n",
"fo=1.0/(2*pi*sqrt(L*C))\n",
"Io=V/R\n",
"V_L=Io*(2*pi*fo*L)\n",
"V_C=V_L\n",
"X_L=(2*pi*fo*L)\n",
"Z_coil=R+(1j*X_L)\n",
"V_coil=Io*Z_coil\n",
"I=300.0/X_L\n",
"R_new=V/I\n",
"Rx=R_new-R\n",
"\n",
"\n",
"#Result:\n",
"print \"(a) (i)The source frequency is %.2f Hz, and\\n (ii)The current supplied by the source is %.2f A.\\n\" %(fo,Io)\n",
"print \"(b) (i)The voltage across the capacitor is %.2f V and\" %(V_C)\n",
"print \" (ii)The voltage across the coil is %.2f V at an angle of %.2f degrees.\\n\" %(abs(V_coil),degrees(phase(V_coil)))\n",
"print \"(c)The resistance that must be connected in series with the circuit to limit the capacitor voltage to 300V is %.3f Ohms.\" %(Rx)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) (i)The source frequency is 220.56 Hz, and\n",
" (ii)The current supplied by the source is 117.92 A.\n",
"\n",
"(b) (i)The voltage across the capacitor is 4150.92 V and\n",
" (ii)The voltage across the coil is 4152.80 V at an angle of 88.28 degrees.\n",
"\n",
"(c)The resistance that must be connected in series with the circuit to limit the capacitor voltage to 300V is 13.607 Ohms.\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.10,Page number: 326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the maximum instantaneous energy stored in the inductor.\"\"\"\n",
"\n",
"from math import pow,pi,sqrt\n",
"\n",
"#Variable Declaration:\n",
"R=3.0 #Resistance of the coil(in Ohms)\n",
"L=12e-03 #Self-inductance of the coil(in Henry)\n",
"fo=9e03 #Resonant frequency(in Hertz)\n",
"V=240.0 #Supply voltage(in Volts) \n",
"\n",
"\n",
"#Calculations:\n",
"C=1.0/(pow((2*pi*fo),2)*L)\n",
"Io=V/R\n",
"ener=0.5*L*Io*Io\n",
"\n",
"\n",
"#Result:\n",
"print \"The value of capacitance to be connected in series with the coil is %e F.\" %(C)\n",
"print \"The maximum instantaneous energy stored in the inductor is %.2f J.\" %(ener)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of capacitance to be connected in series with the coil is 2.605998e-08 F.\n",
"The maximum instantaneous energy stored in the inductor is 38.40 J.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11,Page number: 327"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the parameters of a series RLC circuit.\"\"\"\n",
"\n",
"from math import pi,sqrt,pow\n",
"\n",
"#Variable Declaration:\n",
"fo=10e03 #Resonant frequency(in Hertz)\n",
"BW=1e03 #Bandwidth(in HErtz)\n",
"P=15.3 #Power drawn(in Watts)\n",
"V=200.0 #Voltage of generator(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"V_R=V\n",
"R=(V_R*V_R)/P\n",
"\"\"\" Q=fo/BW=(2*pi*fo*L)/R; Q=Quality factor of the circuit. \"\"\"\n",
"L=R/(2*pi*BW)\n",
"C=1.0/(pow((2*pi*fo),2)*L)\n",
"\n",
"\n",
"#Result:\n",
"print \"The parameters of the circuit are:\\n R=%.2f Ohms,\\n L=%.3f H,\\n C=%e F.\" %(R,L,C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The parameters of the circuit are:\n",
" R=2614.38 Ohms,\n",
" L=0.416 H,\n",
" C=6.087677e-10 F.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.12,Page number: 327"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the half-power frequencies and the circuit current.\"\"\"\n",
"\n",
"from math import sqrt,pi,pow\n",
"\n",
"#Variable Declaration:\n",
"fo=200.0 #Resonant frequency(in Hertz)\n",
"V=400.0 #Voltage of the source(in Volts)\n",
"R=20e-03 #Resistance of the coil(in Ohms)\n",
"L=6e-03 #Inductance of the coil(in Henry)\n",
"\n",
"\n",
"#Calculations:\n",
"C=1.0/(pow((2*pi*fo),2)*L)\n",
"Io=V/R\n",
"X_C=1.0/(2*pi*fo*C)\n",
"V_C=Io*X_C\n",
"Im=sqrt(2)*Io\n",
"U_max=0.5*L*Im*Im\n",
"Q=(2*pi*fo*L)/R\n",
"BW=fo/Q\n",
"f1=fo-(BW/2.0)\n",
"f2=fo+(BW/2.0)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The capacitance of the capacitor is %e F.\" %(C)\n",
"print \"(b)The circuit current is %.2f kA.\" %(Io/1000)\n",
"print \"(c)The voltage across the capacitor is %.2f kV.\" %(V_C/1000)\n",
"print \"(d)The maximum energy stored in the coil is %.2f MJ.\" %(U_max/1000000)\n",
"print \"(e)The lower half-power frequency is %.3f Hz and the upper half-power frequency is %.3f Hz.\" %(f1,f2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The capacitance of the capacitor is 1.055429e-04 F.\n",
"(b)The circuit current is 20.00 kA.\n",
"(c)The voltage across the capacitor is 150.80 kV.\n",
"(d)The maximum energy stored in the coil is 2.40 MJ.\n",
"(e)The lower half-power frequency is 199.735 Hz and the upper half-power frequency is 200.265 Hz.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.13,Page number: 327"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the bandwidth,resonant frequency,inductance and capacitance.\"\"\"\n",
"\n",
"from math import pi,pow,sqrt\n",
"\n",
"#Variable Declaration:\n",
"R=1e03 #Resistance of the resistor(in Ohms)\n",
"f1=20e03 #Lower half-power frequency(in Hertz) \n",
"f2=100e03 #Upper half-power frequency(in Hertz)\n",
"\n",
"\n",
"#Calculations:\n",
"BW=f2-f1\n",
"res_freq=sqrt(f1*f2)\n",
"Q=res_freq/BW\n",
"L=(Q*R)/(2*pi*res_freq)\n",
"C=1.0/(pow((2*pi*res_freq),2)*L)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The bandwidth is %.2f kHz.\" %(BW/1000.0)\n",
"print \"(b)The resonant frequency is %.2f kHz.\" %(res_freq/1000.0)\n",
"print \"(c)The inductance is %e H.\" %(L)\n",
"print \"(d)The capacitance is %e F.\" %(C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The bandwidth is 80.00 kHz.\n",
"(b)The resonant frequency is 44.72 kHz.\n",
"(c)The inductance is 1.989437e-03 H.\n",
"(d)The capacitance is 6.366198e-09 F.\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.14,Page number: 328"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the power at half-power frequencies.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R=5.0 #Resistance of resistor(in Ohms)\n",
"V=20.0 #Voltage of the source(in Volts)\n",
"\n",
"\n",
"#Calculations:\n",
"Zo=R\n",
"Io=V/Zo\n",
"Po=(Io*Io)*R\n",
"P_half=Po/2.0\n",
"\n",
"\n",
"#Result:\n",
"print \"The power at half-power frequencies is %.2f W.\" %(P_half) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The power at half-power frequencies is 40.00 W.\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.15,Page number: 328"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the half-power frequencies and the quality factor.\"\"\"\n",
"\n",
"from math import pi,pow,sqrt\n",
"\n",
"#Variable Declaration:\n",
"res_freq=100.0 #Resonant frequency(in Hertz)\n",
"V=240.0 #Voltage of the source(in Volts)\n",
"R=55e-03 #Resistance of the coil(in Ohms)\n",
"L=7e-03 #Self-inductance of the coil(in Henry)\n",
"\n",
"\n",
"#Calculations:\n",
"C=1.0/(pow((2*pi*res_freq),2)*L)\n",
"Q=(2*pi*res_freq*L)/R\n",
"BW=res_freq/Q\n",
"f1=res_freq-(BW/2.0)\n",
"f2=res_freq+(BW/2.0)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The value of the capacitance is %e F.\" %(C)\n",
"print \"(b)The quality factor of the circuit is %.2f.\" %(Q)\n",
"print \"(c)The lower half-power frequency is %.2f Hz and The upper half-power frequency is %.2f Hz.\" %(f1,f2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The value of the capacitance is 3.618614e-04 F.\n",
"(b)The quality factor of the circuit is 79.97.\n",
"(c)The lower half-power frequency is 99.37 Hz and The upper half-power frequency is 100.63 Hz.\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.16,Page number: 328"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the resonance frequency and the effective resistance at resonance.\"\"\"\n",
"\n",
"from math import sqrt,pi\n",
"\n",
"#Variable Declaration:\n",
"R=20.0 #Resistance of the coil(in Ohms)\n",
"L=0.2 #Inductance of the coil(in Henry)\n",
"C=100e-06 #Capacitance of the capacitor(in Farads)\n",
"\n",
"\n",
"#Calculations:\n",
"res_freq=sqrt(1-((R*R*C)/L))/(2*pi*sqrt(L*C))\n",
"Zo=L/(C*R)\n",
"\n",
"\n",
"#Result:\n",
"print \"The frequency at which the circuit behaves as a non-inductive reactance is %.2f Hz.\" %(res_freq)\n",
"print \"The effective resistance at resonance is %.2f Ohms.\" %(Zo) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The frequency at which the circuit behaves as a non-inductive reactance is 31.83 Hz.\n",
"The effective resistance at resonance is 100.00 Ohms.\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.17,Page number: 328"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the quality factor at the upper tuning frequency.\"\"\"\n",
"\n",
"from math import sqrt,pow,pi\n",
"\n",
"#Variable Declaration:\n",
"L=20e-06 #Self-inductance of the coil(in Henry)\n",
"fo_1=570e03 #Lower tuning frequency(in Hertz) \n",
"fo_2=1560e03 #Upper tuning frequency(in Hertz)\n",
"Q1=50.0 #Quality factor at the lower tuning frequency\n",
"\n",
"\n",
"#Calculations:\n",
"C1=1.0/(pow((2*pi*fo_1),2)*L)\n",
"C2=1.0/(pow((2*pi*fo_2),2)*L)\n",
"R=(2*pi*fo_1*L)/Q1\n",
"BW=fo_1/Q1\n",
"Q2=(2*pi*fo_2*L)/R\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The range of tuning capacitor is from %.3f nF to %.3f nF.\" %((C2*1e09),(C1*1e09))\n",
"print \"(b)The resistance of the coil is %.3f Ohms and the bandwidth of the circuit is %.3f kHz.\" %(R,(BW/1000))\n",
"print \"(c)The quality factor of the circuit at the upper tuning frequency is %.3f.\" %(Q2) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The range of tuning capacitor is from 0.520 nF to 3.898 nF.\n",
"(b)The resistance of the coil is 1.433 Ohms and the bandwidth of the circuit is 11.400 kHz.\n",
"(c)The quality factor of the circuit at the upper tuning frequency is 136.842.\n"
]
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}
|