summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter21.ipynb
blob: 99e2703029b07c379796cb4e94a47f10038dea65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 21: Gas Turbines And Propulsion Systems"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.1:pg-885"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.1\n",
      "\n",
      "\n",
      " Power output =  581.68934348  kJ/kg,\n",
      " The overall efficiency =  25.8717426718  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "r_c = 3.5 # Compression ratio\n",
    "n_c = 0.85 # Efficiency of compressor\n",
    "p1 = 1 # Pressure in bar\n",
    "t1 = 300 # Temperature in K\n",
    "t3 = 310 # Temperature at the exit of the intercooler in K\n",
    "r_c_ = 3.5 # Compression ratio for high pressure compressor\n",
    "n_c_ = 0.85 # Efficiency of H.P. compressor\n",
    "e = 0.8 # Effectiveness of regenerator\n",
    "n_t = 0.88 # Efficiency of H.P. tubine\n",
    "t6 = 1100 # Temperature in H.P. tubine in K\n",
    "t8 = 1050 # Temperature at the entrance of L.P. turbine in K\n",
    "n_t_ = 0.88 # Efficiency of L.P. turbine\n",
    "Cp = 1.005 # Heat capacity of air in kJ/kgK\n",
    "Cp_ = 1.15 # Heat capacity of gases in kJ/kgK\n",
    "gama = 1.4 # Heat capacity ratio for air\n",
    "gama_ = 1.33 # Heat capacity ratio for gases\n",
    "print \"\\n Example 21.1\\n\"\n",
    "p2 = r_c*p1\n",
    "p4 = p2*r_c_\n",
    "t2_s = t1*((r_c)**((gama-1)/gama))\n",
    "t2 = t1+((t2_s-t1)/n_c)\n",
    "t4_s = t3*((r_c_)**((gama-1)/gama))\n",
    "t4 = t3+((t4_s-t3)/n_c_)\n",
    "Wc = Cp*((t2-t1)+(t4-t3))\n",
    "t7 = t6 - (Wc/Cp_)\n",
    "t7_s = t6 - (t6-t7)/n_t\n",
    "r_p = (t6/t7_s)**(gama_/(gama_-1))\n",
    "p7 = p4/r_p\n",
    "t9_s = t8/((p7/p1)**((gama_-1)/gama_))\n",
    "t9 = t8-(t8-t9_s)*n_t_\n",
    "Wt_LP = Cp_*(t8-t9)\n",
    "W_T = Wt_LP+Wc\n",
    "Rw = Wt_LP/W_T\n",
    "Q1 = (Cp_*t6-Cp*t4)+Cp_*(t8-t7)\n",
    "n_plant = Wt_LP/Q1\n",
    "print \"\\n Power output = \",W_T ,\" kJ/kg,\\n The overall efficiency = \",n_plant*100 ,\" percent\"\n",
    "#The answers given in the book have round off error"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.2:pg-886"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.2\n",
      "\n",
      "\n",
      " Flow velocity =  -43.4235444397  m/s,\n",
      " The blade angle at the root =  -1.43579153344  degree,and at the tip =  1.21859133292  degree,\n",
      " The degree of reaction at the root =  63.9551441794  percent, and at the tip =  26.0409057706  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "v_bm = 360 # Blade velocity at the mean diameter of a gas turbine stage in m/s\n",
    "beta1 = 20 # Blade angle at inlet in degree\n",
    "beta2 = 52 # Blade angle at exit in degree\n",
    "r = 0.5 # Degree of reaction\n",
    "Dm = 0.45 # Mean diameter of blade in m\n",
    "h = 0.08 # Mean height of blade in m\n",
    "print \"\\n Example 21.2\\n\"\n",
    "v_f = v_bm/((math.tan(beta2))-math.tan(beta1))\n",
    "r_r = (Dm/2)-h/2\n",
    "r_t = Dm/2 +h/2\n",
    "delta_v_wm = v_f*((math.tan(beta1))+(math.tan(beta2)))\n",
    "v_br = v_bm*(r_r/(Dm/2))\n",
    "delta_v_wr = delta_v_wm*v_bm/v_br\n",
    "\n",
    "v_bt = (r_t/(Dm/2))*v_bm\n",
    "v_w_1m = v_f*(math.tan(beta2))\n",
    "v_w_1t = v_w_1m*(Dm/2)/r_t\n",
    "delta_v_wt = v_f*((math.tan(beta1))+(math.tan(beta2)))*v_bm/v_bt\n",
    "v_w_1r = v_w_1m*((Dm/2)/r_r)\n",
    "alpha_1r = math.atan(v_w_1r/v_f)\n",
    "alpha_2r = math.atan((delta_v_wr-v_w_1r)/v_f)\n",
    "beta_1r = math.atan((v_w_1r-v_br)/v_f)\n",
    "beta_2r = math.atan((v_br+v_f*(math.tan(alpha_2r)))/v_f)\n",
    "alpha_1t = math.atan(v_w_1t/v_f)\n",
    "alpha_2t = math.atan((delta_v_wt-v_w_1t)/v_f)\n",
    "beta_1t = math.atan((v_w_1t-v_bt)/v_f)\n",
    "beta_2t = math.atan((v_bt+(v_f*math.tan(alpha_2t)))/v_f)\n",
    "Rt = v_f*((math.tan(beta_2t))-(math.tan(beta_1t)))/(2*v_bt)\n",
    "Rr = v_f*((math.tan(beta_2r))-(math.tan(beta_1r)))/(2*v_br)\n",
    "print \"\\n Flow velocity = \",v_f ,\" m/s,\\n The blade angle at the root = \",alpha_1r ,\" degree,and at the tip = \",alpha_2r ,\" degree,\\n The degree of reaction at the root = \",Rt*100 ,\" percent, and at the tip = \",Rr*100 ,\" percent\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.3:pg-887"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.3\n",
      "\n",
      "\n",
      " The blade angle at the inlet =  0.513725711568  degree,and at the exit =  1.1075454267  degree,\n",
      " The overall efficiency of the turbine =  87.5152054946  percent\n",
      " The stage efficiency =  85.2048267464  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "p1 = 8 # Pressure of entrance in bar\n",
    "t1 = 1125 # Temperature of entrance in K\n",
    "p2 = 1.5 # Pressure of exit in bar\n",
    "n = 11 # No of stages\n",
    "Vf = 110 # Axial velocity of flow in m/s\n",
    "n_p = 0.85 # Polytropic efficiency \n",
    "Vb = 140 # Mean velocity in m/s\n",
    "gama = 1.33 # Heat capacity ratio for gases\n",
    "Cp = 1.15 # Heat capacity of gases in kJ/kgK\n",
    "r = 0.5 # Fraction of reaction\n",
    "print \"\\n Example 21.3\\n\"\n",
    "t2 = t1*((p2/p1)**((gama-1)*n_p/gama))\n",
    "t2_s = t1*((p2/p1)**((gama-1)/gama))\n",
    "n_s = (t1-t2)/(t1-t2_s)\n",
    "Wt = Cp*(t1-t2)\n",
    "Wt_s = Wt/n\n",
    "V_w1 = (((Wt_s*1000)/Vb) + Vb)/2\n",
    "alpha1 = math.atan(Vf/V_w1)\n",
    "alpha2 = alpha1\n",
    "beta1 = math.atan(Vf/(V_w1-Vb))\n",
    "h_s = Wt_s\n",
    "t_s = h_s/Cp\n",
    "t1_ = t1-t_s\n",
    "t1_s = t1*((t1_/t1)**(gama/((gama-1)*n_p)))**((gama-1)/gama)\n",
    "n_st = (t1-t1_)/(t1-t1_s)\n",
    "print \"\\n The blade angle at the inlet = \",alpha1 ,\" degree,and at the exit = \",beta1 ,\" degree,\\n The overall efficiency of the turbine = \",n_s*100 ,\" percent\\n The stage efficiency = \",n_st*100 ,\" percent\"\n",
    "# The answers given in the book contain round off error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.4:pg-889"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.4\n",
      "\n",
      "\n",
      " Total thrust developed =  6675.46374954  N,\n",
      " The specific fuel consumption =  0.0236198761133  kg/kNs\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "v = 800.0 # Speed of aircraft in km/h\n",
    "h = 10700.0 # Height of aircraft in m\n",
    "p0 = 0.24 # Pressure in bar\n",
    "t0 = -50.0 # Temperature in degree centigrade\n",
    "r_p = 10.0 # Compressor pressure ratio\n",
    "t03 = 1093.0 # Max cycle temperature in K\n",
    "n_ed = 0.9 # Entry duct efficiency\n",
    "n_c = 0.9 # Isentropic efficiency of compressure\n",
    "p_ = 0.14 # Stagnation pressure loss in combustion chamber in bar\n",
    "cv = 43.3 # Calorific value of fuel in MJ/kg\n",
    "n_C = 0.98 # Combustion efficiency\n",
    "n_t = 0.92 # Isentropic efficiency of turbine\n",
    "n_m = 0.98 # Mechanical efficiency of drive\n",
    "n_j = 0.92 # Jet pipe efficiency\n",
    "a = 0.08 # Nozzle outlet area in m**2\n",
    "Cp = 1.005 # Heat capacity of air in kJ/kgK\n",
    "gama = 1.4 # Ratio of heat capacities for air\n",
    "Cp_ = 1.15 # Heat capacity for gases in kJ/kgK\n",
    "gama_ = 1.333 # Ratio of heat capacities for gases\n",
    "print \"\\n Example 21.4\\n\"\n",
    "KE = (1/2)*(v*5/18)**2\n",
    "tr = KE/(1000*Cp)\n",
    "t01 = tr + (273+t0)\n",
    "t01_s = (t0+273)+(n_ed*(t01-(t0+273)))\n",
    "p01 = p0*((t01_s/(t0+273))**(gama/(gama-1)))\n",
    "t02_s = t01*((r_p)**((gama-1)/gama))\n",
    "t02 = (t01) + (t02_s-t01)/n_c\n",
    "p02 = p01*r_p\n",
    "p03 = p02-p_\n",
    "t04 = t03 - (Cp*(t02-t01)/(Cp_*n_m))\n",
    "t04_s = t03-(t03-t04)/n_t\n",
    "p04 = p03/((t03/t04_s)**(gama_/(gama_-1)))\n",
    "p_cr = p04*((2/(gama_+1))**(gama_/(gama_-1)))\n",
    "t05 = t04*(2/(gama_+1))\n",
    "t05_s = t04-((t04-t05)/n_j)\n",
    "p05 = p04/((t04/t05_s)**(gama_/(gama_-1)))\n",
    "R = Cp_*(gama_-1)/gama_\n",
    "v5 = R*t05/(p05*100)\n",
    "Vj = math.sqrt(gama_*R*1000*t05)\n",
    "m = a*Vj/v5\n",
    "Mt = m*(Vj-v*(5/18))\n",
    "Pt = (p05-p0)*a*10**5\n",
    "Tt = Mt+Pt\n",
    "Q1 = m*(t03-t02)*Cp_\n",
    "m_f = Q1/(cv*1000*n_C)\n",
    "m_sf = m_f*1000/Tt\n",
    "print \"\\n Total thrust developed = \",Tt ,\" N,\\n The specific fuel consumption = \",m_sf ,\" kg/kNs\"\n",
    "# The answers given in the book contain round off error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.5:pg-889"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.5\n",
      "\n",
      "\n",
      " Propulsive power =  9.1580625  MW,\n",
      " Thrust power =  4402.35949174  kW,\n",
      " Propulsive efficiency =  48.070860968  percent\n",
      " Thermal efficiency =  36.63225  percent,\n",
      " Overall efficiency =  17.609437967  percent \n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "v = 850.0 # Speed of turbojet in km/h\n",
    "m = 50.0 # Air mass flow rate in kg/s\n",
    "s = 200.0 # Entropy drop across the nozzle in kJ/kg\n",
    "n_n = 0.9 # Nozzle efficiency\n",
    "r = 80.0 # Air fuel ratio\n",
    "cv = 40.0 # Heating value of fuel in MJ/kg\n",
    "Cp = 1005.0 # Heat capacity of air in J/kgK\n",
    "print \"\\n Example 21.5\\n\"\n",
    "Vo = v*(5.0/18)\n",
    "m_f = m/r\n",
    "Ve = math.sqrt(2*Cp*s*n_n)\n",
    "T = (m+m_f)*Ve-m*Vo\n",
    "TP = T*Vo\n",
    "PP = (1.0/2.0)*(m+m_f)*(Ve**2)-(1/2)*(m*Vo**2)\n",
    "n_p = TP/PP\n",
    "n_t = PP/(m_f*cv*1000000)\n",
    "n = n_t*n_p\n",
    "print \"\\n Propulsive power = \",PP*(10**-6) ,\" MW,\\n Thrust power = \",TP*(10**-3) ,\" kW,\\n Propulsive efficiency = \",n_p*100 ,\" percent\\n Thermal efficiency = \",n_t*100 ,\" percent,\\n Overall efficiency = \",n*100 ,\" percent \""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.6:pg-890"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.6\n",
      "\n",
      "\n",
      " Air-fuel ratio =  60.9221650764 ,\n",
      " Thrust power of the propeller =  4144.33833875  kJ/s ,\n",
      " Thrust by the propeller =  26.523765368  kN,\n",
      " Mass flow rate of air flowing through the compressor =  27.4358227  kg/s,\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "p1 = 0.56 # Ambient pressure in bar\n",
    "t1 = 260.0 # Ambient temperature in K\n",
    "r_p = 6.0 # Pressure ratio of compressor\n",
    "n_c = 0.85 # Efficiency of compressor\n",
    "v = 360.0 # Speed of aircraft in km/h\n",
    "d = 3.0 # Propeller diameter in m\n",
    "n_p = 0.8 # Propeller efficiency\n",
    "n_g = 0.95 # Gear reduction efficiency\n",
    "r_e = 5.0 # Expansion ratio\n",
    "n_t = 0.88 # Turbine efficiency\n",
    "t3 = 1100.0 # Temperature at the entrance of turbine in K\n",
    "n_n = 0.9 # Nozzle efficiency\n",
    "cv = 40.0 # Calorific value in MJ/kg\n",
    "print \"\\n Example 21.6\\n\"\n",
    "gama = 1.4 # Heat capacities ratio for air\n",
    "Vo = v*(5.0/18)\n",
    "p2 = p1*r_p\n",
    "t2_s = t1*((r_p)**(0.286))\n",
    "t2 = t1+((t2_s-t1)/n_c)\n",
    "Cp = 1.005 # The value of heat capacity of air as given in the book in kJ/kgK\n",
    "Wc = Cp*(t2-t1)\n",
    "m_f = (t3-t2)/((cv*1000/Cp)-t3)\n",
    "m_a = 1.0/m_f\n",
    "p3=p2\n",
    "p4 = p3/r_e\n",
    "t4_s = t3/((r_e)**(0.286))\n",
    "t4 = t3-((t3-t4_s)*n_t)\n",
    "Wt = (1+m_f)*(t3-t4)*Cp\n",
    "Pp = Wt-Wc\n",
    "p5 = p1\n",
    "t5_s = t4/((p4/p5)**((gama-1)/gama))\n",
    "Vj = math.sqrt(2*Cp*1000*(t4-t5_s)*n_n)\n",
    "Ft = (1+m_f)*Vj-1*Vo\n",
    "V = Vo/n_p\n",
    "V4 = 2*V-Vo\n",
    "Q = (math.pi/4)*(d**2)*V\n",
    "Pt = (1/2.0)*(p1*(10**5)/(287*t1))*Q*((V4**2)-(Vo**2))/1000\n",
    "PT = Pt/n_g\n",
    "ma_c = PT/Pp\n",
    "Fp = Pt*n_p/V\n",
    "print \"\\n Air-fuel ratio = \",m_a ,\",\\n Thrust power of the propeller = \",Pt ,\" kJ/s ,\\n Thrust by the propeller = \",Fp ,\" kN,\\n Mass flow rate of air flowing through the compressor = \",ma_c ,\" kg/s,\"\n",
    "# The answers are given in the book contain calculation error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.7:pg-890"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.7\n",
      "\n",
      "\n",
      " Velocity attain by the rocket in 70 seconds =  1064.23747471  m/s ,\n",
      " The maximum height that the rocket will attain =  86.1455071297  km\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "from scipy import integrate \n",
    "# Given that\n",
    "m = 15000.0 # Initial mass of rocket in kg\n",
    "m_b = 125.0 # Burning rate of propellent in kg/s\n",
    "v = 2000.0 # Relative velocity of gases with respect to the rocket in m/s\n",
    "T = 70.0 # Time in second\n",
    "print \"\\n Example 21.7\\n\"\n",
    "V = (-v*math.log(1-(m_b*T/m)))-(9.81*T)\n",
    "h1,err = integrate.quad(lambda t:-v*math.log(1-(m_b*t/m))-9.81*t,0,T)\n",
    "h2 = (V**2)/(2*9.81)\n",
    "hmax = h2 + h1\n",
    "print \"\\n Velocity attain by the rocket in 70 seconds = \",V ,\" m/s ,\\n The maximum height that the rocket will attain = \",hmax*0.001 ,\" km\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex21.8:pg-890"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 21.8\n",
      "\n",
      "\n",
      " Thrust produced =  218.178625017  kN,\n",
      " Specific impulse =  3482.18007048  Ns/kg\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Given that\n",
    "Pc = 2.4 # Pressure in combustion chamber in MPa\n",
    "Tc = 3170 # Temperature in combustion chamber in K\n",
    "Pj = 55 # Atomospheric pressure in kPa\n",
    "Pe = 85 # Pressure at the exit of nozzle in kPa\n",
    "At = 0.06 # Area at the nozzle throat in m**2\n",
    "n_n = 0.91 # Nozzle efficiency\n",
    "Cd = 0.98 # Cofficient of discharge\n",
    "gama = 1.25 # Heat capacities ratio for gases\n",
    "R = 0.693 # Value of gas constant in kJ/kgK\n",
    "theta = 12 # Half angle of divergence in degree\n",
    "print \"\\n Example 21.8\\n\"\n",
    "Vj = math.sqrt((2*gama*R*1000*Tc/(gama-1))*(1-(Pj/(Pc*1000))**((gama-1)/gama)))\n",
    "Vj_act = ((1+math.cos(12))/2)*Vj*math.sqrt(n_n)\n",
    "m = At*Pc*(10**6)*((gama/(R*1000*Tc))*(2/(gama+1))**((gama+1)/(gama-1)))**(1.0/2)\n",
    "m_act = Cd*m\n",
    "Ae = m/(Pe*Vj)\n",
    "Ft = m*Vj+Ae*(Pe-Pj)*1000\n",
    "SIm = Ft/m_act\n",
    "print \"\\n Thrust produced = \",Ft*0.001 ,\" kN,\\n Specific impulse = \",SIm ,\" Ns/kg\"\n",
    "# The answers are given in the book contain claculation error.\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}