1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 19: Gas Compressors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.1:pg-818"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.1\n",
"\n",
"\n",
" Pressure ratio is 8.4764775804\n",
"\n",
" Indicated power is 11.2490101513 kW\n",
"\n",
" Shaft power is 14.0612626891 kW\n",
"\n",
" Mass flow rate is 0.0723071537289 kg/s\n",
"\n",
" Pressure ratio when second stage is added is 71.8506721711\n",
"\n",
" Volume derived per cycle is V2 0.000327741753347 m**3\n",
"\n",
" Second stage bore would be 52.7442736748 mm\n"
]
}
],
"source": [
"import math\n",
"T2 = 488.0\n",
"T1 = 298.0 \n",
"n = 1.3 \n",
"R =8314.0/44.0\n",
"rp = (T2/T1)**(n/(n-1))\n",
"\n",
"b = 0.12 # Bore of compressor\n",
"L = 0.15 # Stroke of compressor\n",
"V1 = (math.pi/4)*(b)**2*L \n",
"P1 = 120e03 # in kPa\n",
"W = ((n*P1*V1)/(n-1))*(((rp)**((n-1)/n))-1)\n",
"P = (W*1200*0.001)/60 \n",
"\n",
"V1_dot = V1*(1200.0/60.0)\n",
"m_dot = (P1*V1_dot)/(R*T1)\n",
"\n",
"rp_1 = rp**2\n",
"V2 = (1/rp)**(1/n)*V1\n",
"d = math.sqrt((V2*4)/(L*math.pi))\n",
"print \"\\n Example 19.1\\n\"\n",
"print \"\\n Pressure ratio is \",rp\n",
"print \"\\n Indicated power is \",P ,\" kW\"\n",
"print \"\\n Shaft power is \",P/0.8 ,\" kW\"\n",
"print \"\\n Mass flow rate is \",m_dot ,\" kg/s\"\n",
"print \"\\n Pressure ratio when second stage is added is \",rp_1\n",
"print \"\\n Volume derived per cycle is V2 \",V2 ,\" m**3\"\n",
"print \"\\n Second stage bore would be \",d*1000 ,\" mm\"\n",
"#The answers vary due to round off error\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.2:pg-819"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.2 \n",
" \n",
"\n",
" Volumetric efficiency of system is 73.7793963433 percent\n"
]
}
],
"source": [
"import math\n",
"c = 0.05 # Clearance volume\n",
"p1 = 96.0 # Inlet ressure in bar\n",
"p2 = 725.0 # Outlet pressure in bar\n",
"pa = 101.3 # Atmospheric pressure\n",
"Ta = 292.0 # Atmospheric temperature in kelvin\n",
"T1 = 305.0 # Inlet temperature in Kelvin\n",
"n = 1.3 # polytropic index\n",
"print \"\\n Example 19.2 \\n \"\n",
"n_v = (1+c-c*((p2/p1)**(1/n)))*(p1/pa)*(Ta/T1)\n",
"print \"\\n Volumetric efficiency of system is \",n_v*100 ,\" percent\"\n",
"# Answer is not mentioned in book\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.3:pg-819"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.3\n",
"\n",
"\n",
" Indicated poer is 5.47565638255 kW\n",
"\n",
" Volumetric efficiency is 78.6098417845 percent\n",
"\n",
" Mass flow rate is 1.54145895718 kg/min\n",
"\n",
" Free air delivery is 1.25775746855 m**3/min\n",
"\n",
" Isothermal efficiency is 80.6428056306 percent\n",
"\n",
" Input power is 6.44194868535 kW\n"
]
}
],
"source": [
"import math\n",
"P1 = 101.3e03 \n",
"P4 = P1 # in Pa\n",
"P2 = 8*P1 \n",
"P3 = P2\n",
"T1 = 288 \n",
"Vs = 2000\n",
"V3 = 100 \n",
"Vc = V3\n",
"V1 = Vs + Vc \n",
"n = 1.25 \n",
"R = 287\n",
"V4 = ((P3/P4)**(1/n))*V3\n",
"W = ((n*P1*(V1-V4)*1e-06)/(n-1))*(((P2/P1)**((n-1)/n))-1)\n",
"P = (W*800*0.001)/60 \n",
"\n",
"m = (P1*(V1-V4)*1e-06)/(R*T1)\n",
"m_dot = m*800\n",
"\n",
"FAD = (V1-V4)*1e-06*800\n",
"\n",
"Wt = P1*(V1-V4)*1e-06*math.log(P2/P1)\n",
"n_isothermal = (Wt*800*0.001)/(P*60)\n",
"\n",
"Pi = P/0.85\n",
"n_v =100*(V1-V4)/Vs\n",
"print \"\\n Example 19.3\\n\"\n",
"print \"\\n Indicated poer is \",P ,\" kW\"\n",
"print \"\\n Volumetric efficiency is \",n_v ,\" percent\"\n",
"print \"\\n Mass flow rate is \",m_dot ,\" kg/min\"\n",
"print \"\\n Free air delivery is \",FAD ,\" m**3/min\"\n",
"print \"\\n Isothermal efficiency is \",100*n_isothermal ,\" percent\"\n",
"print \"\\n Input power is \",Pi ,\" kW\"\n",
"\n",
"#The answers vary due to round off error\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.4:pg-819"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.4\n",
"\n",
"\n",
" Power input is 9.55276123312 kW, \n",
" Volumetric efficiency is 55.4657309635 percent, \n",
" Bore of the cylinder is 0.184932327621 m, \n",
" Stroke of the cylinder is 0.277398491431 m\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"m = 3.0 # Mass flow rate in kg/min\n",
"p1 = 1.0 # Initial pressure in bar\n",
"T1 = 300.0 # Initial temperature in K\n",
"p3 = 6.0 # Pressure after compression in bar\n",
"p5 = 15.0 # Maximum pressure in bar\n",
"N = 300.0 # Rpm of compressure\n",
"n = 1.3 # Index of compression and expansion \n",
"r = 1.5 # Stroke to bore ratio\n",
"R = 287.0 # Gas constant of air\n",
"t = 15.0 # Temperature in degree centigrade\n",
"print \"\\n Example 19.4\\n\"\n",
"T = t+273\n",
"Wc = (n/(n-1))*(m/60)*(R*(1e-3)*T1)*(((p3/p1)**((n-1)/n))-1)\n",
"r1 = (p5/p1)**(1.0/n)# Where r1 = V1/Vc\n",
"r2 = r1-1 # Where r2 = Vs/Vc\n",
"r3 = (p3/p1)**(1.0/n)\n",
"n_vol = (r1-r3)*(T/T1)/r2\n",
"V = m*R*T/(2*(1e5)*N)\n",
"Vs = V/n_vol\n",
"d = (Vs*4/(math.pi*r))**(1.0/3.0)\n",
"l = r*d\n",
"print \"\\n Power input is \",Wc ,\" kW, \\n Volumetric efficiency is \",n_vol*100 ,\" percent, \\n Bore of the cylinder is \",d ,\" m, \\n Stroke of the cylinder is \",l ,\" m\"\n",
"#The answers vary due to round off error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.5:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.5\n",
"\n",
"\n",
" Power required to drive the unit is 17.7326053799 kW,\n",
" Isothermal efficiency is 65.8690064051 percent,\n",
" Mechanical efficiency is 98.5144743328 percent\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"d = 15.0 # Diameter in cm\n",
"l = 18.0 # Stroke in cm\n",
"C = 0.04 # Ratio of clearance volume and sweft volume\n",
"p1 = 1.0 # Pressure in bar\n",
"t1 = 25.0 # Temperature in degree centigrade\n",
"p2 = 8.0# Pressure in bar\n",
"N = 1200.0 # Rpm of compressure \n",
"W = 18.0 # Actual power input in kW\n",
"m = 4.0 # Mass flow rate in kg/min\n",
"R = 0.287\n",
"print \"\\n Example 19.5\\n\"\n",
"T1 = t1+273\n",
"v = R*T1/(p1*100)\n",
"V = m*v\n",
"Vs = (math.pi/4)*((d*(1e-2))**2)*(l*1e-2)*N\n",
"n_vol = V/Vs\n",
"n = (math.log(p2/p1))/(math.log((1+C-n_vol)/C))\n",
"# The value of n given in the example is wrong\n",
"n = 1.573\n",
"T2 = T1*(p2/p1)**((n-1)/n)\n",
"Wc = (n/(n-1))*(m*R/60)*(T2-T1)\n",
"n_mech = Wc/W\n",
"W_isothermal = m*R*T1*math.log(p2/p1)/60\n",
"n_iso = W_isothermal/W\n",
"print \"\\n Power required to drive the unit is \",Wc ,\" kW,\\n Isothermal efficiency is \",n_iso*100 ,\" percent,\\n Mechanical efficiency is \",n_mech*100 ,\" percent\"\n",
"#The answers vary due to round off error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.6:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.6\n",
"\n",
"\n",
" Power required to drive the compressure is 181.333212391 kW\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"d = 40.0 # Diameter in cm\n",
"l = 50.0 # Stroke in cm\n",
"D = 5.0 # Piston rod diameter in cm\n",
"C = 0.04 # Ratio of clearance volume and sweft volume\n",
"p1 = 1.0 # Pressure in bar\n",
"t1 = 15.0 # Temperature in degree centigrade\n",
"p2 = 7.5# Pressure in bar\n",
"N = 300.0 # Rpm of compressure \n",
"n_vol = 0.8 # Volumetric efficiency\n",
"n_mech = 0.95 # Mechanical efficiency\n",
"n_iso = .7 # Isothermal efficiency\n",
"R = 0.287\n",
"print \"\\n Example 19.6\\n\"\n",
"Vs = (math.pi/4)*((d*(1e-2))**2)*(l*(1e-2))\n",
"Vs_ = (math.pi/4)*(((d*(1e-2))**2)-(D*(1e-2))**2)*(l*1e-2)\n",
"Vs_min = (Vs+Vs_)*2*N\n",
"V1 = Vs_min*n_vol\n",
"W_iso = p1*V1*(math.log(p2/p1))\n",
"Win = W_iso/n_iso\n",
"Wc = Win/n_mech\n",
"print \"\\n Power required to drive the compressure is \",Wc ,\" kW\"\n",
"#The answers vary due to round off error\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.7:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.7\n",
"\n",
"\n",
" Minimum work done is 215.324046 kJ/kg,\n",
" Heat rejected to intercooler is 87.0010719231 kJ/kg\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"p1 = 1.0 # Pressure in bar\n",
"t1 = 27.0 # Temperature in degree centigrade\n",
"n = 1.3 # Index of the compression process\n",
"p3 = 9.0# Pressure in bar\n",
"R = 0.287\n",
"print \"\\n Example 19.7\\n\"\n",
"T1 = t1+273\n",
"p2 = math.sqrt(p1*p3)\n",
"Wc = ((2*n*R*T1)/(n-1))*(((p2/p1)**((n-1)/n))-1)\n",
"T2 = T1*((p2/p1)**((n-1)/n))\n",
"H = 1.005*(T2-T1)\n",
"print \"\\n Minimum work done is \",Wc ,\" kJ/kg,\\n Heat rejected to intercooler is \",H ,\" kJ/kg\"\n",
"#The answers vary due to round off error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.8:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.8\n",
"\n",
"\n",
" Minimum power required by the compressure is 49.3370051888 kW,\n",
" Bore of the compressure in low pressure side is 26.5961520268 cm,\n",
" Bore of the compressure in high pressure side is 8.92172168806 cm,\n",
" Stroke of the compressure is 36.0 cm\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"V = 4.0 # Volume flow rate in m**3/min\n",
"p1 = 1.013 # Pressure in bar\n",
"t1 = 15.0 # Temperature in degree centigrade\n",
"N = 250.0 # Speed in RPM\n",
"p4 = 80.0# Delivery pressure in bar\n",
"v = 3.0 #Speed of piston in m/sec\n",
"n_mech = .75 # Mechanical efficiency \n",
"n_vol = .8 # Volumetric efficiency\n",
"n = 1.25 # Polytropic index\n",
"print \"\\n Example 19.8\\n\"\n",
"T1 = t1+273\n",
"p2 = math.sqrt(p1*p4)\n",
"W = (2*n/(n-1))*(p1*100/n_mech)*(V/60)*((p2/p1)**((n-1)/n) - 1)\n",
"L = v*60/(N*2)\n",
"Vs = V/N\n",
"D_LP = math.sqrt(Vs*V/(math.pi*L*n_vol))\n",
"D_HP = D_LP*math.sqrt(p1/p2)\n",
"print \"\\n Minimum power required by the compressure is \",W ,\" kW,\\n Bore of the compressure in low pressure side is \",D_LP*100 ,\" cm,\\n Bore of the compressure in high pressure side is \",D_HP*100 ,\" cm,\\n Stroke of the compressure is \",L*100 ,\" cm\"\n",
"#The answers vary due to round off error\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.9:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.9\n",
"\n",
"\n",
" Compressor work = 107.662023 kJ/kg,\n",
" Total heat transfer to the surrounding = 125.119949539 kJ/kg\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"p1 = 1.0 # Pressure in bar\n",
"T1 = 300.0 # Temperature in K\n",
"p4 = 9.0# Compressed pressure in bar\n",
"n = 1.3 # Polytropic index\n",
"R = 0.287 # Gas constant in kJ/kgK\n",
"cp = 1.042 # Heat capapcity in kJ/kgK\n",
"print \"\\n Example 19.9\\n\"\n",
"p2 = math.sqrt(p1*p4)\n",
"T2 =T1*((p2/p1)**((n-1)/n))\n",
"Wc = (2*n/(n-1))*R*1*(T2-T1)\n",
"Wc_ = Wc/2\n",
"Q = 1*cp*(T2-T1)\n",
"Q_ = cp*(T1-T2)+Wc_\n",
"H = Q+2*Q_\n",
"print \"\\n Compressor work = \",Wc_ ,\" kJ/kg,\\n Total heat transfer to the surrounding = \",H ,\" kJ/kg\"\n",
"#The answers given in the book contain calculation error\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.10:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.10\n",
"\n",
"\n",
" Diameter of cylinder = 18.484702902 24.5391705107 cm, \n",
" Storke of the cylinder = 24.5391705107 cm,\n",
" Isothermal efficiency = 83.4955018622 percent\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"N = 300.0 # Speed in RPM\n",
"# Intake condition of compressor\n",
"p1 = 0.98 # Pressure in bar\n",
"T1 = 305.0 # Temperature in K\n",
"\n",
"p6 = 20.0# Delivery pressure in bar\n",
"p3 = 5.0 # Intermediate pressure in bar\n",
"C = .04 # Ratio of clearance volume to the stroke volume\n",
"v = 3.0 # Volume flow rate of compressure in m**3/min\n",
"p = 1.0 # pressure in bar\n",
"t = 25.0 # Temperautre in degree centigrade\n",
"n = 1.3 # Polytropic index\n",
"R = 0.287 # Gas constant in kJ/kgK\n",
"print \"\\n Example 19.10\\n\"\n",
"T = t+273\n",
"r0 = 1+C # Where r0 = v1/vs\n",
"r1 = C*(p3/p1)**(1/n)# Where r1 = v4/vs\n",
"r2=r0-r1#Where r2 is the ratio of volume of air taken at 0.98 bar,305 k and vs\n",
"r3 = r2*(T/T1)*p1/p # Where r3 is the ratio of volume of air taken at free air conditions and vs\n",
"n_vol = r3\n",
"m = p*(1e5)*(v/60)/(R*1000*T)\n",
"T2 = T1*((p3/p1)**((n-1)/n))\n",
"# For perfect intercooling\n",
"T5 = T1\n",
"p5 = p3\n",
"T6 = T5*((p6/p5)**((n-1)/n))\n",
"Wc = (n/(n-1))*m*R*((T2-T1)+(T6-T5))\n",
"m_a_s = m*60/N\n",
"v_fa_s = m_a_s *(R*1000)*T/(p*1e5)\n",
"d = ((v_fa_s/n_vol)*(4/math.pi))**(1.0/3.0)\n",
"l = d # As given in the question\n",
"P_iso = m*R*T1*(math.log(p6/p1))\n",
"n_iso = P_iso/Wc\n",
"print \"\\n Diameter of cylinder = \",Wc,d*100 ,\" cm, \\n Storke of the cylinder = \",l*100 ,\" cm,\\n Isothermal efficiency = \",n_iso*100 ,\" percent\"\n",
"#The answers given in the book contain calculation error\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.11:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.11\n",
"\n",
"\n",
" No of stages for min power input = 1.0 ,\n",
" Power required = 476.74544125 kW/kg air,\n",
" The power required for a single stage compressor = 476.74544125 kW,\n",
" Maximum temperature in any stage = 681.338601917 K\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"p1 = 1 # Intake pressure of compressor in bar\n",
"T1 = 298 # Intake temperature in K\n",
"p_d = 36 # Delivery pressure in bar\n",
"T2 = 390 # Maximum temperature in any stage in K\n",
"n = 1.3 # Polytropic index\n",
"R = 0.287\n",
"print \"\\n Example 19.11\\n\"\n",
"r = (T2/T1)**(n/(n-1))\n",
"N = math. ceil(r)\n",
"p2 = (p_d/p1)**(1/N)\n",
"p3 = (p_d/p1)**(2/N)\n",
"p4 = (p_d/p1)**(3/N)\n",
"Wc = (N*n*R*T1/(n-1))*((p_d/p1)**((n-1)/(N*n))-1)\n",
"Wc_ = (n/(n-1))*(1*R*T1)*((p_d/p1)**((n-1)/n)- 1)\n",
"T = T1*((p2/p1)**((n-1)/n))\n",
"print \"\\n No of stages for min power input = \",N ,\",\\n Power required = \",Wc ,\" kW/kg air,\\n The power required for a single stage compressor = \",Wc_ ,\" kW,\\n Maximum temperature in any stage = \",T ,\" K\"\n",
"#The answers given in the book contain round off error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.12:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.12\n",
"\n",
"\n",
" Indicated output = 132.877965499 kJ\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"p1 = 700.0 # Intake pressure of compressor in kPa\n",
"t1 = 38.0 # Intake temperature in degree centigrade\n",
"c = 0.4 # Ratio of cutoff volume to stroke volume\n",
"p3 = 112.0 # Back pressure in kPa\n",
"r = 0.85 # Ratio of area of actual indicator diagram to the outlined in the question\n",
"n = 1.3 # Polytropic index\n",
"R = 0.287\n",
"m = 1.25 # Air mass in kg\n",
"print \"\\n Example 19.12\\n\"\n",
"T1 = t1+273\n",
"T2 = T1/((1/c)**(n-1))\n",
"p2 = p1*(c**n)\n",
"V2 = m*R*T2/p2\n",
"v2 = V2/m\n",
"A = R*T1 + R*(T1-T2)/(n-1) - p3*v2\n",
"Io = A*r*m\n",
"print \"\\n Indicated output = \",Io ,\" kJ\"\n",
"# The answer given in the book vary due to round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.13:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.13\n",
"\n",
"\n",
" The intermediate pressure are - \n",
" p2 = 2.46621207433 bar,\n",
" p3 = 6.08220199557 bar,\n",
" The effective sweft volume = 0.0477129384264 m**3,\n",
" Temperature of air delivered per stroke at 15 bar = 85.3946742162 degree centigrade,\n",
" The work done per kg of air = 254.077921795 kJ\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"d = 450.0 # Bore of low pressure cylinder in mm\n",
"l = 300.0 # Stroke in mm\n",
"c = 0.05 # Ratio of clearance volume to sweft volume\n",
"p1 = 1.0 # Intake pressure in bar\n",
"t1 = 18.0 # Intake temperature in degree centigrade\n",
"p4 = 15.0 # Delivery pressure in bar\n",
"n = 1.3 # Compression and expansion index\n",
"R = 0.29 # Gas constant in kJ/kgK\n",
"print \"\\n Example 19.13\\n\"\n",
"T1 = t1+273\n",
"r = (p4/p1)**(1.0/3.0)\n",
"p2 = p1*r\n",
"p3 = p2*r\n",
"Vs = (math.pi/4)*((d*1e-3)**2)*(l*1e-3)\n",
"V11 = c*Vs\n",
"V1 = Vs +V11\n",
"V12 = V11*((r)**(1.0/n))\n",
"Vs_e = V1 - V12\n",
"T3 = T1\n",
"T5 = T3\n",
"T6 = T1*(r**((n-1)/n))\n",
"t6 = T6-273\n",
"V6_7 = (p1/p4)*(T6/T1)*(V1 - V12)\n",
"W = (3*n*R*T1/(n-1))*((p2/p1)**((n-1)/n)-1)\n",
"print \"\\n The intermediate pressure are - \\n p2 = \",p2 ,\" bar,\\n p3 = \",p3 ,\" bar,\\n The effective sweft volume = \",Vs ,\" m**3,\\n Temperature of air delivered per stroke at 15 bar = \",t6 ,\" degree centigrade,\\n The work done per kg of air = \",W ,\" kJ\"\n",
"# The answers given in the book vary due to round off error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.14:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.14\n",
"\n",
"\n",
" Work input = 1.5195 kJ/rev,\n",
" Work input for a vane-type compressor = 1.34802979062 kJ/rev\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"p1 = 1.013 # Inlet pressure in bar\n",
"r = 1.5 # Pressure ratio\n",
"Vs = 0.03 # Induce volume of air in m**3/rev\n",
"gama = 1.4 \n",
"print \"\\n Example 19.14\\n\"\n",
"p2 = p1*r\n",
"W = (p2-p1)*Vs*100\n",
"pi = (p1+p2)/2\n",
"A_A = (gama/(gama-1))*(p1*Vs)*((pi/p1)**((gama-1)/gama)-1)*100\n",
"Vb = Vs *((p1/pi)**(1/gama))\n",
"A_B = (p2-pi)*Vb*100\n",
"Wr = A_A + A_B\n",
"print \"\\n Work input = \",W ,\" kJ/rev,\\n Work input for a vane-type compressor = \",Wr ,\" kJ/rev\"\n",
"# The answers given in the book vary due to round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.15:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.15\n",
"\n",
"\n",
" Power required to drive the blower = 99.47 kW,\n",
" Power required = 77.9220893777 kW\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"m = 1.0 # Mass flow rate in kg/s\n",
"r = 2.0 # Prssure ratio of blower \n",
"t1 = 70.0 # Inlet temperature in degree centigrade\n",
"p1 = 1.0 # Inlet pressure in bar\n",
"R = 0.29 # Gas constant in kJ/kgK\n",
"x = 0.7 # Reduction in pressure ratio and intake volume \n",
"gama = 1.4\n",
"print \"\\n Example 19.15\\n\"\n",
"T1 = t1+273\n",
"V = m*R*T1/(p1*100)\n",
"P = V*(p1*r-p1)*100\n",
"p2 = p1*((1/x)**(gama))\n",
"V2 = x*V\n",
"P_ = (gama/(gama-1))*(p1*100*V)*((p2/p1)**((gama-1)/gama)-1) + V2*(p1*r-p2)*100\n",
"\n",
"print \"\\n Power required to drive the blower = \",P ,\" kW,\\n Power required = \",P_ ,\" kW\"\n",
"# The answers given in the book vary due to round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.16:pg-820"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.16\n",
"\n",
"\n",
" Actual temperature at the end of first stage = 382.63704941 K,\n",
" Actual temperature at the end of second stage = 425.041961043 K,\n",
" The total compressor power = 965.01085424 kW\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"r1 = 2.5 # Pressure ratio of compressor for first stage\n",
"r2 = 2.1 # Pressure ratio of compressor for second stage\n",
"m = 5.0 # Mass flow rate of air in kg/s \n",
"t1 = 10.0 # Inlet temperature in degree centigrade\n",
"p1 = 1.013 # Inlet pressure in bar\n",
"td = 50.0 # Temperature drop in intercooler in degree centigreade\n",
"n_iso = .85 # Isentropic efficiency\n",
"cp = 1.005 # Heat capacity of air in kJ/kgK\n",
"x = 0.7 # Reduction in pressure ratio and intake volume \n",
"gama = 1.4 # Ratio of heat capacities for air\n",
"print \"\\n Example 19.16\\n\"\n",
"T1 = t1+273\n",
"T2s = T1*((r1)**((gama-1)/gama))\n",
"T2 = T1 + (T2s-T1)/n_iso\n",
"T3 = T2 - td\n",
"T4s = T3*((r2)**((gama-1)/gama))\n",
"T4 = T3 + (T4s-T3)/n_iso\n",
"P = m*cp*((T2-T1)+(T4-T3))\n",
"print \"\\n Actual temperature at the end of first stage = \",T2 ,\" K,\\n Actual temperature at the end of second stage = \",T4 ,\" K,\\n The total compressor power = \",P ,\" kW\"\n",
"# The answers given in the book vary due to round off error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.17:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.17\n",
"\n",
"\n",
" Power required to drive the compressor = 54.6039650117 kW,\n",
" Stagnatio temperature = 109.18614963 degree centigrade,\n",
" Stagnation pressure = 160.465577551 kPa\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"r = 2.5 # Static pressure ratio of supercharger \n",
"p1 = 0.6 # Static inlet pressure in bar\n",
"t1 = 5 # Static inlet temperature in degree centigrade\n",
"A_r = 13.0 # Air-fuel ratio\n",
"m = 0.04 # The rate of fuel consumed by the engine in kg/s\n",
"gama= 1.39 # For air-fuel mixture \n",
"cp = 1.005 # Heat capacity for air-fuel mixture in kJ/kgk\n",
"n_iso = .84 # Isentropic efficiency of compressor \n",
"v = 120.0 # Exit velocity from the compressor in m/s\n",
"print \"\\n Example 19.17\\n\"\n",
"T1 = t1+273\n",
"T2s = T1*((r)**((gama-1)/gama))\n",
"T2 = T1 +(T2s-T1)/n_iso\n",
"m_g = m*(A_r+1)\n",
"P = m_g*cp*(T2-T1)\n",
"T02 = T2 + (v**2)/(2*cp*1000)\n",
"t02 = T02-273\n",
"p02 = p1*r*((T02/T2)**(gama/(gama-1)))*100\n",
"print \"\\n Power required to drive the compressor = \",P ,\" kW,\\n Stagnatio temperature = \",t02 ,\" degree centigrade,\\n Stagnation pressure = \",p02 ,\" kPa\"\n",
"# The answers given in the book vary due to round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.18:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.18\n",
"\n",
"\n",
" The temperature of air at outlet = 233.053979565 degree centigrade,\n",
" Power input = 300.644961473 kW,\n",
" Diameter of impeller = 0.916122726914 m, \n",
" Blade inlet angle = 0.245135262084 degree,\n",
" Diffuser inlet angle = 0.138096713577 degree \n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"N = 10000 # Speed in RPM\n",
"V = 1.2 # Volume flow rate of free air in m**3/s\n",
"p1 = 1.0 # Inlet pressure in bar\n",
"t1 = 27.0 # Inlet temperature in degree centigrade\n",
"r = 5.0 # Pressure ratio\n",
"vf = 60.0 # Velocity flow rate in m/s\n",
"sigma = 0.9 # Slip factor\n",
"n_iso = 0.85 # Isentropic efficiency\n",
"gama = 1.4\n",
"R = 0.287\n",
"cp = 1.005\n",
"print \"\\n Example 19.18\\n\"\n",
"T1 = t1+273\n",
"T2s = T1*((r)**((gama-1)/gama))\n",
"T2 = T1 +(T2s-T1)/n_iso\n",
"m = p1*100*V/(R*288)\n",
"Wc = m*cp*(T2-T1)\n",
"Vb2 = (Wc*1000/(m*sigma))**(1.0/2.0)\n",
"D = Vb2*60/(math.pi*N)\n",
"Vb1 = Vb2/2\n",
"beta1 = math.atan(vf/Vb1)\n",
"alpha = math.atan(vf/(sigma*Vb2))\n",
"print \"\\n The temperature of air at outlet = \",T2-273 ,\" degree centigrade,\\n Power input = \",Wc ,\" kW,\\n Diameter of impeller = \",D ,\" m, \\n Blade inlet angle = \",beta1 ,\" degree,\\n Diffuser inlet angle = \",alpha ,\" degree \"\n",
"# The answers given in the book vary due to round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.19:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" \n",
" Example 19.19\n",
"\n",
"\n",
" Total head pressure ratio = 1.00344817308 , \n",
" The required power at input shaft = 3.37798367776 kW,\n",
" Inlet angle at the root = 0.0 degree and 29.8821913183 minute,\n",
" Inlet angle at the tip = 0.0 degree and 49.6377044903 minute\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"N = 264 # Speed in RPS\n",
"sigma = 0.91 # Slip factor\n",
"d = 0.482 # Impeller diameter in m\n",
"D = 0.306 # Impeller eye diameter\n",
"D_ = 0.153 # Impeller root eye diameter in m\n",
"vf = 138 # Uniform axial inlet velocity in m/s\n",
"V = 1.2 # Volume flow rate of free air in m**3/s\n",
"m = 9.1 # Air mass flow rate in kg/s\n",
"T1 = 294 # Inlet air stagnation temperature in K\n",
"n_iso = 0.8 # Total head isentropic efficiency\n",
"n_mech = 0.98 # Mechanical efficiency\n",
"gama = 1.4 # Ratio of heat capacities\n",
"cp = 1.006 # Heat capacity in kJ/kgK\n",
"print \"\\n Example 19.19\\n\"\n",
"Wc = m*sigma*(2*math.pi*d*N/2)/1000\n",
"P_e = Wc/n_mech\n",
"delta_T = Wc/(m*cp)\n",
"delta_T_ideal = delta_T*n_iso\n",
"T2_i = delta_T_ideal + T1\n",
"r = (T2_i/T1)**(gama/(gama-1)) # Where r = p02/p01\n",
"Vb = 2*math.pi*N*D/2\n",
"V_er = (2*math.pi*N*D_/2)\n",
"beta1 = math.atan(vf/Vb)\n",
"beta2 = math.atan(vf/V_er)\n",
"beta1_ = (beta1 - math.floor(beta1))*60\n",
"beta2_ = (beta2 - math.floor(beta2))*60\n",
"print \"\\n Total head pressure ratio = \",r ,\", \\n The required power at input shaft = \",P_e ,\" kW,\\n Inlet angle at the root = \",math.floor(beta1) ,\" degree and \",beta1_ ,\" minute,\\n Inlet angle at the tip = \",math.floor(beta2) ,\" degree and \",beta2_ ,\" minute\"\n",
"# The answers given in the book for total head pressure ratio and required power at input shaft contain calculation error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.20:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.20\n",
"\n",
"\n",
" Impeller tip diameter = 548.821948011 mm\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"N = 16000.0 # Speed in RPM\n",
"t1 = 17.0 # Intake temperture of gas in degree centigrade\n",
"rp = 4.0 # Pressure ratio\n",
"sigma = 0.85# Slip factor\n",
"n_iso = 0.82 # Isentropic efficiency\n",
"alpha_wirl = 20.0 # Pre-wirl angle in degree\n",
"d1 = 200.0 # Mean diameter of impeller eye in mm\n",
"V1 = 120.0 #Absolute air velocity in m/s\n",
"gama = 1.4 # Ratio of heat capacities\n",
"cp = 1.005 # Heat capacity in kJ/kgK\n",
"print \"\\n Example 19.20\\n\"\n",
"T1 = t1 + 273\n",
"T2s = T1*((rp)**((gama-1)/gama))\n",
"delta_Ts = T2s-1\n",
"delta_T = delta_Ts/n_iso\n",
"Wc = 1 *cp*delta_T\n",
"Vb1 = (math.pi*d1*(1e-3)*N)/60\n",
"Vw1 = V1*math.sin(alpha_wirl)\n",
"Vb2 = 459.78 # By solving quadratic equation 172.81e3=0.85*Vb2**2-167.55*41.05\n",
"d2 = Vb2*60/(math.pi*N)\n",
"\n",
"print \"\\n Impeller tip diameter = \",d2*1000 ,\" mm\"\n",
"# The answer given in the book varies due to round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.21:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.21\n",
"\n",
"\n",
" The delivery pressure = 6.07125291521 bar,\n",
" The no of stages = 9.0 ,\n",
" The internal efficiency = 0.84689822539 \n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"m = 2.5 # Mass flow rate in kg/s\n",
"p1 = 1.0 # Inlet pressure in bar\n",
"T1 = 300.0 # Inlet temperature in bar\n",
"n_s = 0.88 # Stage efficiency\n",
"Wc = 600.0 # Power input in kW\n",
"delta_t = 21.0 # Temperature rise in first stage in degree centigrade\n",
"gama = 1.4 # Ratio of heat capacities \n",
"cp = 1.005 # Heat capacity in kJ/kgK\n",
"print \"\\n Example 19.21\\n\"\n",
"x = n_s*gama/(gama-1)# Where x = (n/(n-1))\n",
"T = Wc/(m*cp)+T1\n",
"p = p1*((T/T1)**(x))\n",
"T2 = T1 + n_s*delta_t\n",
"r = ((T2/T1)**(gama/(gama-1)))# Where r = p2/p1\n",
"N = math.log(p/p1)/math.log(r)\n",
"N_ = math. ceil(N)\n",
"Ts = T1*(p/p1)**((gama-1)/gama)\n",
"n_inter = (Ts-T1)/(T-T1)\n",
"print \"\\n The delivery pressure = \",p ,\" bar,\\n The no of stages = \",N_ ,\",\\n The internal efficiency = \",n_inter ,\" \""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.22:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.22\n",
"\n",
"\n",
" Fluid deflection angle = 0.206163966177 degree,\n",
" Power input = 41.8928434516 kJ/kg,\n",
" The degree of reaction = 66.0453433333 percent\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"D = 0.5 # Mean diameter of impeller in m\n",
"N = 15000.0 # Speed in RPM\n",
"Vf = 230.0 # Velocity of flow in m/s\n",
"p1 = 1.0 # Inlet pressure in bar\n",
"T1 = 300.0 # Inlet temperature in K\n",
"Vw1 = 80.0 # Velocity of whirl at inlet in m/s\n",
"n_s = 0.88 # Stage efficiency\n",
"rp = 1.5 # Pressure ratio\n",
"gama = 1.4 \n",
"cp = 1.0005\n",
"print \"\\n Example 19.22\\n\"\n",
"Vb = (math.pi*D*N/60)\n",
"Ts = T1*((rp)**((gama-1)/gama))\n",
"T = T1 + (Ts-T1)/n_s\n",
"Wc = cp*(T-T1)\n",
"Vw2 = Vw1 + (Wc*1000)/(Vb)\n",
"beta1 = math.atan(Vf/(Vb-Vw1))\n",
"beta2 = math.atan(Vf/(Vb-Vw2))\n",
"theta = beta2-beta1\n",
"R = 1-((Vw1+Vw2)/(2*Vb))\n",
"\n",
"print \"\\n Fluid deflection angle = \",theta ,\" degree,\\n Power input = \",Wc ,\" kJ/kg,\\n The degree of reaction = \",R*100 ,\" percent\"\n",
"# The answers given in the book vary because of round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.23:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.23\n",
"\n",
"\n",
" Blade angle at the tip = 1.02107077046 degree,\n",
" Blade angle at the hub = 2.71029118833 degree\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"v = 5.0 #olume flow rate in m**3/s\n",
"d = 1.0 #ean impeller diameter in m\n",
"D = 0.6 # Hub diameter in m\n",
"N = 600.0 #otational speed in RPM\n",
"h = 35.0 #heoratical head in mm\n",
"rho = 1.2 # Density of air in kg/m**3\n",
"rho_w = 1000.0 #ensity of water in kg/m**3\n",
"print \"\\n Example 19.23\\n\"\n",
"Vf = v*4/(math.pi*(d**2 - D**2))\n",
"Vb = (math.pi*d*N/60)\n",
"Vb_ = (math.pi*D*N/60)\n",
"H = h/rho\n",
"Vw2 = H*9.81/(Vb)\n",
"Vw2_ = H*9.81/(Vb_)\n",
"beta_tip = (Vf/(Vb_-Vw2))\n",
"beta_hub = (Vf/(Vb_-Vw2_))\n",
"print \"\\n Blade angle at the tip = \",beta_tip ,\" degree,\\n Blade angle at the hub = \",beta_hub ,\" degree\"\n",
"# The answers given in the book vary because of round off error\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex19.24:pg-821"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Example 19.24\n",
"\n",
"\n",
" Speed of impeller = 6456.85894335 RPM,\n",
" Impeller width at inlet = -73.5259022616 cm,\n",
" Impeller width at outlet = 1.87680083777 cm,\n"
]
}
],
"source": [
"import math\n",
"# Given that\n",
"N0 = 9000.0 # Rotational speed in RPM\n",
"Q = 6.0 # Volume flow rate in m**3/s\n",
"p1 = 1.0 # Initial pressure in bar\n",
"t1 = 25.0 # Initial temperature in degree centigrade\n",
"p2 = 2.2 # Compressed pressure in bar\n",
"n = 1.33 # Compression index\n",
"Vf = 75.0 # Velocity of flow in m/s\n",
"beta1 = 30.0 # Blade angle at inlet in degree\n",
"beta2 = 55.0 # Blade angle at outlet in degree\n",
"d = 0.75 # Diameter of impeller in m\n",
"cp = 1.005 \n",
"print \"\\n Example 19.24\\n\"\n",
"T1 = t1+273\n",
"T2 = T1*(p2/p1)**((n-1)/n)\n",
"Wc = cp*(T2-T1)\n",
"x = Wc # Where x = Vw2*Vb2\n",
"y = Vf/math.tan(beta2)# Where y = Vb2-Vw2(Equation 1)\n",
"z = (y**2 +4*x*1000)**(0.5) # Where z = Vw2+Vb2(Equation 2)\n",
"# By solving Equation 1 and Equation 2\n",
"Vb2 = (y+z)/2\n",
"Vw2 = ((z-y)/2)\n",
"N = Vb2*60/(math.pi*d)\n",
"Vb1 = Vf/math.tan(beta1)\n",
"D1 = Vb1*60/(math.pi*N)\n",
"b1 = Q/(math.pi*D1*Vf)\n",
"Q_ = Q* (1/p2)*(T2/T1)\n",
"b2 = Q_/(math.pi*d*Vf)\n",
"print \"\\n Speed of impeller = \",N ,\" RPM,\\n Impeller width at inlet = \",b1*100 ,\" cm,\\n Impeller width at outlet = \",b2*100 ,\" cm,\"\n",
"# The answers given in the book vary because of round off error\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|