summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter18.ipynb
blob: 97968f87becf595f02a7c6d1399d7386d5f063da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 18:Elements of Heat Transfer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.1:pg-757"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.1\n",
      "\n",
      "\n",
      " The rate of heat removal is  486.40484238  W\n",
      "\n",
      " Temperature at inside surface of brick is  20.2812224957  degree celcius\n"
     ]
    }
   ],
   "source": [
    "\n",
    "ho = 12.0 # Outside convective heat transfer coefficient in W/m**2K \n",
    "x1 = 0.23# Thickness of brick in m\n",
    "k1 = 0.98 # Thermal conductivity of brick in W/mK\n",
    "x2 = 0.08 # Thickness of foam in m\n",
    "k2 = 0.02# Thermal conductivity of foam in W/mK\n",
    "x3 = 1.5# Thickness of wood in cm\n",
    "k3 = 0.17# Thermal conductivity of wood in W/cmK\n",
    "hi = 29.0# Inside convective heat transfer coefficient in W/m**2K \n",
    "A = 90.0 # Total wall area in m**2\n",
    "to = 22.0# outside air temperature in degree Celsius\n",
    "ti = -2.0 # Inside air temperature in degree Celsius\n",
    "print \"\\n Example 18.1\\n\"\n",
    "U = (1/((1/ho)+(x1/k1)+(x2/k2)+(x3*1e-2/k3)+(1/hi)))# Overall heat transfer coefficient\n",
    "Q = U*A*(to-ti) # Rate of heat transfer\n",
    "R = (1/ho)+(x1/k1)\n",
    "t2 = to-Q*R/A # Temperature at inside surface of brick\n",
    "\n",
    "print \"\\n The rate of heat removal is \",Q ,\" W\"\n",
    "\n",
    "print \"\\n Temperature at inside surface of brick is \",t2 ,\" degree celcius\"\n",
    "\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.2:pg-758"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.2\n",
      "\n",
      "\n",
      " Heat transfer rate is  2.33519645654  kW\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "r1 = 5.0 # Inner radius of steel pipe in cm\n",
    "r2 = 10.0 # Extreme radius of inner insulation in cm\n",
    "r3 = 13.0# Extreme radius of outer insulation in cm\n",
    "K1 = 0.23 # Thermal conductivity of inner insulation in W/mK\n",
    "K2 = 0.37 # Thermal conductivity of outer insulation in W/mK\n",
    "hi = 58.0 # Inner heat transfer coefficient in W/m**2K\n",
    "h0 = 12.0 # Inner heat transfer coefficient in W/m**2K\n",
    "ti = 60.0 # Inner temperature in degree Celsius\n",
    "to = 25.0 # Outer temperature in degree Celsius\n",
    "L = 50.0 # Length of pipe in m\n",
    "\n",
    "print \"\\n Example 18.2\\n\"\n",
    "Q =((2*math.pi*L*(ti-to))/((1/(hi*r1*1e-2))+(math.log(r2/r1)/(K1))+(math.log(r3/r2)/(K2))+(1/(h0*r3*1e-2))))\n",
    "# Rate of heat transfer\n",
    "print \"\\n Heat transfer rate is \",Q/1e3 ,\" kW\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.3:pg-759"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.3\n",
      "\n",
      "\n",
      " Thermal conductivity of rod A is  57.4969670417  W/mK\n",
      "\n",
      " Thermal conductivity of rod B is  86.076212035  W/mK\n",
      "\n",
      " Thermal conductivity of rod C is  116.0  W/mK\n"
     ]
    }
   ],
   "source": [
    "\n",
    "to = 20 # Environment temperature in degree Celsius\n",
    "t = 100# Temperature of steam path in degree Celsius\n",
    "ta1 =  26.76 # Temperature at other end in degree Celsius for rod A \n",
    "d = 10 # diameter of rod in mm\n",
    "L = 0.25 # length of rod in m\n",
    "h = 23 # heat transfer coefficient in W/m**2 K\n",
    "tb1 =  32.00 # Temperature at other end in degree Celsius for rod B \n",
    "tc1 =  36.93 # Temperature at other end in degree Celsius for rod C \n",
    "\n",
    "print \"\\n Example 18.3\\n\"\n",
    "A = math.pi/4 * (d*1e-3)**2 #Area of rod\n",
    "p = math.pi*d*1e-3 # perimeter of rod\n",
    "# For rod A\n",
    "a = (ta1-to)/(t-to) \n",
    "ma = (math.acosh(1/a))/L\n",
    "\n",
    "Ka = (h*p)/(ma**2*A) # Thermal conductivity of rod A\n",
    "print \"\\n Thermal conductivity of rod A is \",Ka ,\" W/mK\"\n",
    "# For rod B\n",
    "b = (tb1-to)/(t-to) \n",
    "mb = (math.acosh(1/b))/L\n",
    "\n",
    "Kb = (h*p)/(mb**2*A) # Thermal conductivity of rod B\n",
    "print \"\\n Thermal conductivity of rod B is \",Kb ,\" W/mK\"\n",
    "c = (tc1-to)/(t-to) \n",
    "mc = (math.acosh(1/c))/L\n",
    "\n",
    "Kc = (h*p)/(mc**2*A) # Thermal conductivity of rod A\n",
    "print \"\\n Thermal conductivity of rod C is \",math. ceil(Kc) ,\" W/mK\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.4:pg-760"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.4\n",
      "\n",
      "\n",
      " Midway temperature of rod is  88.7138777413  degree Celcius\n",
      "\n",
      " Heat loss rate is  88.0331604603 W\n"
     ]
    }
   ],
   "source": [
    "h = 17.4 # Convective heat transfer coefficient in W/m**2K\n",
    "K = 52.2 # Thermal conductivity in W/mK\n",
    "t = 120 # Heat reservoir wall temperature in degree celcius\n",
    "t0 = 35 # Ambient temperature in degree celcius\n",
    "L = 0.4 # Lenght of rod in m\n",
    "b  = .050 # width of rod in mm\n",
    "H = .050 # Heigth of rod in mm\n",
    "\n",
    "print \"\\n Example 18.4\\n\"\n",
    "l= L/2\n",
    "A = b*H\n",
    "m = math.sqrt(4*h*b/(K*b*H))\n",
    "t1 = (t-t0)/math.cosh(m*l) + t0 # Midway temperature of rod\n",
    "Q1 = 2*5.12*K*A*(t-t0)*math.tanh(m*l) # Heat loss rate \n",
    "print \"\\n Midway temperature of rod is \",t1 ,\" degree Celcius\"\n",
    "print \"\\n Heat loss rate is \",Q1 ,\"W\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.5:pg-760"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.5\n",
      "\n",
      "\n",
      " Time to cool down to 2 degree celcius is  30.5933342864  min\n",
      "\n",
      " Temperature of peas after 10 minutes is  13.1714792663  degree celcius\n",
      "\n",
      " Temperature of peas after 30 minutes is  1.0393274697  degree celcius\n"
     ]
    }
   ],
   "source": [
    "\n",
    "d = 8.0 # Average diameter in mm\n",
    "r = 750.0 # Density in Kg/m**3\n",
    "t = 2.0 # Intermediate temperature in degree celcius\n",
    "t_inf = 1.0 # Ambient temperature in degree celcius\n",
    "t0 = 25.0 # Initial temperature in degree celcius\n",
    "c = 3.35 # Specific heat in kJ/KgK\n",
    "h = 5.8 # Heat transfer coeeficient in W/m**2K\n",
    "T1 = 10.0 # time period in minutes\n",
    "T2 = 30.0 # time period in minutes \n",
    "t1 = 5.0 # Intermediate temperature in degree celcius\n",
    "print \"\\n Example 18.5\\n\"\n",
    "tau1 = c*1e3*math.log((t0-t_inf)/(t-t_inf))/(h*60) # Time to cool down to 2 degree celcius\n",
    "tau2 = (t0-t_inf)*(math.exp(-(c*T1*60)/(c*1e3))) # Temperature of peas after 10 minutes\n",
    "Y = math.exp(-1*(c*T2*60)/(c*1e3))\n",
    "tau3 = (t0*Y-t1)/(Y-1)\n",
    "\n",
    "print \"\\n Time to cool down to 2 degree celcius is \",tau1 ,\" min\"\n",
    "print \"\\n Temperature of peas after 10 minutes is \",tau2 ,\" degree celcius\"\n",
    "print \"\\n Temperature of peas after 30 minutes is \",tau3 ,\" degree celcius\"\n",
    "#The answers given in book are incorrect\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.6:pg-761"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.6\n",
      "\n",
      "\n",
      " Surface area of heat exchanger is  53.1155468795  m**2\n"
     ]
    }
   ],
   "source": [
    "\n",
    "mh =  1000 # mass flow rate of hot fluid in Kg/h\n",
    "mc = 1000 # mass flow rate of cold fluid in Kg/h\n",
    "ch = 2.09 # Specific heat capacity of hot fluid in kJ/kgK\n",
    "cc = 4.187 #Specific heat capacity of cold fluid in kJ/kgK \n",
    "th1 = 80# Inlet temperature of hot fluid in degree celcius\n",
    "th2 = 40 # Exit temperature of hot fluid in degree Celsius\n",
    "tc1 = 30 # Inlet temperature of cold fluid in degree Celsius\n",
    "U = 24 # heat transfer coefficient in W/m**2K\n",
    "\n",
    "print \"\\n Example 18.6\\n\"\n",
    "Q = mh*ch*(th1-th2)\n",
    "tc2 = Q/(mc*cc) + tc1# outlet temperature of cold fluid\n",
    "te = th2-tc1 # Exit end temperature difference in degree Celsius\n",
    "ti = th1 - tc2 # Inlet end temperature  difference in degree Celsius\n",
    "t_lm = (ti-te)/(math.log(ti/te))\n",
    "A = Q / (U*t_lm*3.6) # Surface are of heat exchanger\n",
    "\n",
    "print \"\\n Surface area of heat exchanger is \",A ,\" m**2\"\n",
    "\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.7:pg-762"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.7\n",
      "\n",
      "\n",
      " Surface area of heat exchanger is  3.52948841744  m**2\n"
     ]
    }
   ],
   "source": [
    "\n",
    "Hfg = 2257.0 # Latent heat at 100 degree Celsius\n",
    "\n",
    "ma =  500.0 # mass flow rate of air in Kg/h\n",
    "ch = 1.005 # Specific heat capacity of hot air in kJ/kgK\n",
    "ta1 = 260.0 # Inlet temperature of hot air in degree Celsius\n",
    "ta2 = 150.0 # Inlet temperature of cold air in degree Celsius\n",
    "tc1 = 100.0 # Inlet temperature of steam\n",
    "tc2 = tc1 # Exit temperature of steam\n",
    "U = 46.0 # heat transfer coefficient in W/m**2K\n",
    "\n",
    "print \"\\n Example 18.7\\n\"\n",
    "Q = ma*ch*(ta1-ta2)\n",
    "m = Q/Hfg # mass flow rate of steam\n",
    "te = ta2-tc1 # Exit end temperature difference in degree Celsius\n",
    "ti = ta1 - tc2 # Inlet end temperature  difference in degree Celsius\n",
    "t_lm = (ti-te)/(math.log(ti/te))\n",
    "A = Q / (U*t_lm*3.6) # Surface are of heat exchanger\n",
    "\n",
    "print \"\\n Surface area of heat exchanger is \",A ,\" m**2\"\n",
    "\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.8:pg-763"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.8\n",
      "\n",
      "\n",
      " Exit temperature of oil is  90.1251029717  degree celcius\n",
      "\n",
      " Rate of heat transfer is  1302.7384927  kW\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "mh =  20.15 # mass flow rate of hot fluid in Kg/s\n",
    "mc = 5.04 # mass flow rate of cold fluid in Kg/h\n",
    "ch = 2.094 # Specific heat capacity of hot fluid in kJ/kgK\n",
    "cc = 4.2 #Specific heat capacity of cold fluid in kJ/kgK \n",
    "th1 = 121# Inlet temperature of hot fluid in degree Celsius\n",
    "th2 = 40 # Exit temperature of hot fluid in degree Celsius\n",
    "tc1 = 10 # Inlet temperature of cold fluid in degree Celsius\n",
    "U = 0.34 # heat transfer coefficient in kW/m**2K\n",
    "n = 200 # total number of tubes\n",
    "l = 4.87 # length of tube in m\n",
    "d = 1.97 # Outer diameter in cm\n",
    "print \"\\n Example 18.8\\n\"\n",
    "A = math.pi*n*d*1e-2*l # Total surface area\n",
    "mc_oil = mh*ch\n",
    "mc_water = mc*cc\n",
    "c_min = mc_water\n",
    "c_max =mc_oil\n",
    "    \n",
    "if (mc_oil<mc_water):\n",
    "    c_min = mc_oil\n",
    "    c_max =mc_water\n",
    "\n",
    "R = c_min/c_max\n",
    "NTU = U*A/c_min\n",
    "e = (1-math.exp(-1*NTU*(1-R)))/(1-R*math.exp(-1*NTU*(1-R)))\n",
    "t_larger = e*(th1-tc1)\n",
    "t_water = t_larger \n",
    "t_oil = t_water*mc_water/mc_oil\n",
    "th2 = th1 - t_oil # Exit temperature of oil\n",
    "Q = mh*ch*(th1-th2) # Rate of heat transfer\n",
    "\n",
    "print \"\\n Exit temperature of oil is \",th2 ,\" degree celcius\"\n",
    "print \"\\n Rate of heat transfer is \",Q ,\" kW\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.9:pg-763"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.9\n",
      "\n",
      "\n",
      " Heat transfer coefficient is  4074.68413756  W/m**2K\n",
      "\n",
      " Rate of heat transfer is  38.4029932568  kW\n"
     ]
    }
   ],
   "source": [
    "u_m = 0.8 # mean velocity in m/s\n",
    "D = 5 # Diameter in cm\n",
    "v = 4.78e-7 # dynamic coefficient of viscosity\n",
    "Pr = 2.98 # Prantl number\n",
    "K = 0.66 # Thermal conductivity in W/mK\n",
    "l = 3 # length of pipe in m\n",
    "tw = 70 # Wall temperature\n",
    "tf = 50 # mean water temperature\n",
    "print \"\\n Example 18.9\\n\"\n",
    "Re = u_m*D*1e-2/v # Reynold number\n",
    "Nu = 0.023*(Re**0.8)*(Pr**0.4)\n",
    "h = K*Nu/(D*1e-2) # Heat transfer coefficient\n",
    "A = math.pi*D*1e-2*l # Surface area\n",
    "Q = h*A*(tw-tf) # Rate of heat transfer\n",
    "print \"\\n Heat transfer coefficient is \",h ,\" W/m**2K\"\n",
    "print \"\\n Rate of heat transfer is \",Q/1e3 ,\" kW\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.10:pg-764"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.10\n",
      "\n",
      "\n",
      " Rate of heat dissipation is  31.392  W\n"
     ]
    }
   ],
   "source": [
    "\n",
    "b = 10 # width of plate in cm\n",
    "h = 15 # Height of plate in cm\n",
    "hr = 8.72 # Radiative heat transfer coefficient in W/m**2K\n",
    "tw = 140 # temperature of wall in degree Celsius\n",
    "tf = 20 # Atmospheric temperature in degree Celsius\n",
    "v = 2.109e-5 # Coefficient of dynamic viscosity in m**2/s\n",
    "Pr = 0.692 # Prantl number\n",
    "K = 0.0305 # Thermal conductivity in W/mK\n",
    "L = 0.15 # characteristic length in m\n",
    "g = 9.81 # Gravitational acceleration in m/s**2\n",
    "\n",
    "print \"\\n Example 18.10\\n\"\n",
    "A = 2*b*1e-2*h*1e-2 # total area of plate\n",
    "t_mean = (tw+tf)/2 +273\n",
    "B = 1/t_mean\n",
    "del_t = tw-tf\n",
    "Gr = g*B*del_t*L**3/v**2 # Grashoff number\n",
    "x = Gr*Pr\n",
    "Nu = 0.59*(Gr*Pr)**0.25\n",
    "hc = Nu*K/L\n",
    "Q = (hc+hr)*A*del_t # Rate of heat dissipation\n",
    "print \"\\n Rate of heat dissipation is \",Q ,\" W\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.11:pg-765"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.11\n",
      "\n",
      "\n",
      " Time required for heating operation is  27.6219838873  s\n"
     ]
    }
   ],
   "source": [
    "d1 = 2.0 # Diameter of steel rod in cm\n",
    "d2 = 16.0 # Diameter of cylindrical furnace in cm\n",
    "e1 = 0.6 # emissivity of inner surface\n",
    "e2 = 0.85 # emissivity of rod surface\n",
    "T = 1093.0 # Inner surface temperature of furncae in degree celcius\n",
    "Tr1 = 427.0 # Initial temperature of rod in degree celcius\n",
    "Tr2 = 538.0 # Initial temperature of rod in degree celcius\n",
    "sigma = 5.67e-8 # Constant\n",
    "rho = 7845.0 # density in kg/ m**3\n",
    "c = 0.67 # Specific heat capacity in kJ/kgK\n",
    "print \"\\n Example 18.11\\n\"\n",
    "A_ratio = d1/d2 # Surface area ratio of cylindrical bodies\n",
    "F12 = (1/((1/e1)+(A_ratio*(1/e2 -1))))\n",
    "A1 = math.pi*d1*1e-2*1 # Surface area of rod\n",
    "T1 = Tr1+273\n",
    "T2 = T +273\n",
    "T3 = Tr2 +273\n",
    "Qi = sigma*A1*F12*(T1**4-T2**4)\n",
    "Qe = sigma*A1*F12*(T3**4-T2**4)\n",
    "\n",
    "Q_avg = abs((Qi+Qe)/2)\n",
    "tau = rho*c*(1e-4)*math.pi*(Tr2-Tr1)/(Q_avg*(1e-3))\n",
    "\n",
    "# Time required for heating operation \n",
    "print \"\\n Time required for heating operation is \",tau ,\" s\"\n",
    "\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex18.12:pg-765"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 18.12\n",
      "\n",
      "\n",
      " Net heat transfer between two cylinders is  7297.2729358  W/m length\n",
      "\n",
      " Example 18.12\n",
      "\n",
      "\n",
      " Net heat transfer between two cylinders is  7297.2729358  W/m length\n"
     ]
    }
   ],
   "source": [
    "\n",
    "d1 = 10.0 # Diameter of inner cylinder in cm\n",
    "d2 = 20.0 # Diameter of outer cylinder in cm\n",
    "e1 = 0.65 # emissivity of inner surface\n",
    "e2 = 0.4 # emissivity of outer surface\n",
    "T1 = 1000.0 # Inner surface temperature in K\n",
    "T2 = 500.0 # outer suface temperature in K\n",
    "sigma = 5.67e-8 # Constant\n",
    "print \"\\n Example 18.12\\n\"\n",
    "A1 = math.pi*d1*1e-2\n",
    "A2 = math.pi*d2*1e-2\n",
    "R =(((1-e1)/(e1*A1))+((1-e2)/(e2*A2))+(1/(A1*1)))\n",
    "Eb1 = sigma*T1**4\n",
    "Eb2 = sigma*T2**4\n",
    "Q = (Eb1-Eb2)/R # Net heat transfer between two cylinders\n",
    "print \"\\n Net heat transfer between two cylinders is \",Q ,\" W/m length\"\n",
    "\n",
    "#The answers vary due to round off error\n",
    "\n",
    "d1 = 10.0 # Diameter of inner cylinder in cm\n",
    "d2 = 20.0 # Diameter of outer cylinder in cm\n",
    "e1 = 0.65 # emissivity of inner surface\n",
    "e2 = 0.4 # emissivity of outer surface\n",
    "T1 = 1000.0 # Inner surface temperature in K\n",
    "T2 = 500.0 # outer surface temperature in K\n",
    "sigma = 5.67e-8 # Constant\n",
    "print \"\\n Example 18.12\\n\"\n",
    "A1 = math.pi*d1*1e-2\n",
    "A2 = math.pi*d2*1e-2\n",
    "R =(((1-e1)/(e1*A1))+((1-e2)/(e2*A2))+(1/(A1*1)))\n",
    "Eb1 = sigma*T1**4\n",
    "Eb2 = sigma*T2**4\n",
    "Q = (Eb1-Eb2)/R # Net heat transfer between two cylinders\n",
    "print \"\\n Net heat transfer between two cylinders is \",Q ,\" W/m length\"\n",
    "\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}