summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter15.ipynb
blob: b877c09e6484f230384479a1a37b7110f17b36e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
{

 "metadata": {

  "name": "",

  "signature": "sha256:963989322b075173bceba6b56d05b500e9545a7d78fbd73ae76c2e2f2e3cee9c"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter 15:Psychrometrics"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.1:pg-631"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "Ps = 0.033363 #Saturation pressure in bar\n",

      "P = 1.0132 # Atmospheric pressure in bar\n",

      "W2 = (0.622*Ps)/(P-Ps) # mass fraction of moisture\n",

      "hfg2 = 2439.9 # Latent heat of vaporization in kJ/kg\n",

      "hf2 = 109.1 # Enthalpy of liquid moisture in kJ/kg\n",

      "cpa = 1.005 # Constant pressure heat capacity in kJ/kg\n",

      "hg = 2559.9 # Enthalpy of gas moisture in kJ/kg\n",

      "hw1 = hg # constant enthalpy\n",

      "T2 = 26 # wbt in degree Celsius \n",

      "T1 = 32 # dbt in degree Celsius \n",

      "W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2)\n",

      "Pw = ((W1/0.622)*P)/(1+(W1/0.622))\n",

      "\n",

      "Psat = 0.048 # Saturation pressure in bar at 32 degree\n",

      "fi = Pw/Psat # Relative humidity\n",

      "\n",

      "mu = (Pw/Psat)*((P-Psat)/(P-Pw)) # Degree of Saturation\n",

      "Pa = P-Pw # Air pressure\n",

      "Ra = 0.287 # Gase constant\n",

      "Tdb = T1+273 #  dbt in K\n",

      "rho_a = (Pa*100)/(Ra*Tdb) # Density of air \n",

      "rho_w = W1*rho_a # Water vapor density\n",

      "ta = 32 # air temperature in degree Celsius  \n",

      "tdb = 32 # dbt in degree Celsius \n",

      "tdp = 24.1# Dew point temperature in degree Celsius \n",

      "h = cpa*ta + W1*(hg+1.88*(tdb-tdp))\n",

      "print \"\\n Example 15.1\\n\"\n",

      "print \"\\n Specific humidity is \",W1 ,\" kg vap./kg dry air\"\n",

      "print \"\\n Partial pressure of water vapour is \",Pw ,\" bar\"\n",

      "print \"\\n Dew point temperature is \",tdp ,\" degree celcius\"\n",

      "print \"\\n Relative humidity is \",fi*100 ,\" percent \"\n",

      "print \"\\n Degree of saturation is \",mu\n",

      "print \"\\n Density of dry air is \",rho_a ,\" kg/m**3\"\n",

      "print \"\\n Density of water vapor is \",rho_w ,\" kg/m**3\"\n",

      "print \"\\n Enthalpy of the mixture is \",h ,\" kJ/kg\"\n",

      "#The answers vary due to round off error\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.1\n",

        "\n",

        "\n",

        " Specific humidity is  0.0186241999923  kg vap./kg dry air\n",

        "\n",

        " Partial pressure of water vapour is  0.0294557080928  bar\n",

        "\n",

        " Dew point temperature is  24.1  degree celcius\n",

        "\n",

        " Relative humidity is  61.3660585267  percent \n",

        "\n",

        " Degree of saturation is  0.602092639086\n",

        "\n",

        " Density of dry air is  1.12382965889  kg/m**3\n",

        "\n",

        " Density of water vapor is  0.0209304283244  kg/m**3\n",

        "\n",

        " Enthalpy of the mixture is  80.1126961785  kJ/kg\n"

       ]

      }

     ],

     "prompt_number": 16

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.2:pg-632"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "Ps = 2.339 # Satutation pressure in kPa\n",

      "P = 100.0 # Atmospheric pressure in kPa\n",

      "W2 = (0.622*Ps)/(P-Ps) # Specific humidity\n",

      "hfg2 = 2454.1 # Latent heat of vaporization in kJ/kg\n",

      "hf2 = 83.96 # Enthalpy of fluid in kJ/kg\n",

      "cpa = 1.005 # COnstant pressure heat capacity of air\n",

      "hw1 = 2556.3# ENthalpy of water\n",

      "T2 = 20.0  # Exit tempeature of mixture in degree Celsius\n",

      "T1 = 30.0 # Inlet tempeature of mixture in degree Celsius\n",

      "W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2) # Specific humidity at inlet\n",

      "Pw1 = ((W1/0.622)*P)/(1+(W1/0.622)) # pressure due to moisture\n",

      "Ps1 = 4.246 # Saturation pressure in kPa\n",

      "fi = (Pw1/Ps1) # Humidity ratio \n",

      "\n",

      "print \"\\n Example 15.2\\n\"\n",

      "print \"\\n Humidity ratio of inlet mixture is \",W1 ,\" kg vap./kg dry air\"\n",

      "print \"\\n Relative humidity is \",fi*100 ,\" percent\"\n",

      "#The answers vary due to round off error\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.2\n",

        "\n",

        "\n",

        " Humidity ratio of inlet mixture is  0.0107221417941  kg vap./kg dry air\n",

        "\n",

        " Relative humidity is  39.9106245278  percent\n"

       ]

      }

     ],

     "prompt_number": 15

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.3:pg-633"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "Psat = 2.339 # Saturation pressure in kPa\n",

      "fi3 = 0.50 # Humidity ratio\n",

      "P = 101.3 # Atmospheric pressure in kPa\n",

      "cp = 1.005 # Constant pressure heat addition in kJ/kg\n",

      "Pw3 = fi3*Psat # Vapor pressure\n",

      "Pa3 = P-Pw3 # Air pressure\n",

      "W3 = 0.622*(Pw3/Pa3) # Specific humidity\n",

      "Psa1_1 = 0.7156 # Saturation pressure in kPa\n",

      "Pw1 = 0.7156 # moister pressure in kPa \n",

      "Pa1 = P-Pw1 # Air pressure\n",

      "W1 = 0.622*(Pw1/Pa1)  # Specific humidity\n",

      "W2 = W1 # Constant humidity process\n",

      "T3 = 293.0 # Temperature at state 3 in K\n",

      "Ra = 0.287 # Gas constant\n",

      "Pa3 = 100.13 # Air pressure at state 3\n",

      "va3 = (Ra*T3)/Pa3 # volume of air at state 3\n",

      "SW = (W3-W1)/va3 # spray water \n",

      "tsat = 9.65 # Saturation temperature in K\n",

      "hg = 2518.0 # Enthalpy of gas in kJ/kg\n",

      "h4 = 10.0 # Enthalpy at state 4 in kJ/kg\n",

      "t3 = T3-273\n",

      "t2 = ( W3*(hg+1.884*(t3-tsat))-W2*(hg-1.884*tsat) + cp*t3 - (W3-W2)*h4 )/ (cp+W2*1.884)\n",

      "print \"\\n Example 15.3\\n\"\n",

      "print \"\\n Mass of spray water required is \",SW ,\" kg moisture/m**3\"\n",

      "print \"\\n Temperature to which air must be heated is \",t2 ,\" degree celcius\"\n",

      "#The answers vary due to round off error"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.3\n",

        "\n",

        "\n",

        " Mass of spray water required is  0.00338125323083  kg moisture/m**3\n",

        "\n",

        " Temperature to which air must be heated is  27.0827212424  degree celcius\n"

       ]

      }

     ],

     "prompt_number": 14

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.4:pg-635"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "h1 = 82.0 # Enthalpy at state 1 in kJ/kg\n",

      "h2 = 52.0 # Enthalpy at state 2 in kJ/kg\n",

      "h3 = 47.0 # Enthalpy at state 3 in kJ/kg\n",

      "h4 = 40.0# Enthalpy at state 4 in kJ/kg\n",

      "W1 = 0.020 # Specific humidity at state 1\n",

      "W2 = 0.0115# Specific humidity at state 2 \n",

      "W3 = W2 # Constant humidity process\n",

      "v1 = 0.887 # Specific volume at state 1\n",

      "v = 3.33 # amount of free sir circulated\n",

      "G = v/v1 # air flow rate\n",

      "CC = (G*(h1-h3)*3600)/14000 # Capacity of the heating Cooling coil\n",

      "R = G*(W1-W3) # Rate of water vapor removal\n",

      "HC = G*(h2-h3) #Capacity of the heating coil\n",

      "print \"\\n Example 15.4\\n\"\n",

      "print \"\\n Capacity of the cooling coil is \",CC ,\" tonnes\"\n",

      "print \"\\n Capacity of the heating coil is \",HC ,\" kW\"\n",

      "print \"\\n Rate of water vapor removal is \",R ,\" kg/s\"\n",

      "#The answers vary due to round off error"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.4\n",

        "\n",

        "\n",

        " Capacity of the cooling coil is  33.7880496054  tonnes\n",

        "\n",

        " Capacity of the heating coil is  18.7711386697  kW\n",

        "\n",

        " Rate of water vapor removal is  0.0319109357384  kg/s\n"

       ]

      }

     ],

     "prompt_number": 1

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.5:pg-636"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "W1 = 0.0058 # Humidity ratio for first stream\n",

      "W2 = 0.0187  # Humidity ratio for second stream\n",

      "h1 = 35.0 # Enthalpy of first stream in kJ/kg\n",

      "h2 = 90.0# Enthalpy of second stream in kJ/kg\n",

      "G12 = 1.0/2.0 #ratio\n",

      "W3 = (W2+G12*W1)/(1+G12) # Final humidity ratio of mixture\n",

      "h3 = (2.0/3.0)*h2 + (1.0/3.0)*h1# Final enthalpy of mixture\n",

      "\n",

      "print \"\\n Example 15.5 \\n\"\n",

      "print \"\\n Final condition of air is given by\"\n",

      "print \"\\n W3 = \",W3 ,\" kg vap./kg dry air\"\n",

      "print \"\\n h3 =  \",h3 ,\" kJ/kg dry air\"\n",

      "#The answers vary due to round off error\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.5 \n",

        "\n",

        "\n",

        " Final condition of air is given by\n",

        "\n",

        " W3 =  0.0144  kg vap./kg dry air\n",

        "\n",

        " h3 =   71.6666666667  kJ/kg dry air\n"

       ]

      }

     ],

     "prompt_number": 13

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.6:pg-637"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given that\n",

      "t = 21.0 # Temperature in degreee celsius\n",

      "w = 20.0 # Relative humidity in percentage\n",

      "t_ = 21.0 # Final temperature of air in degree celsius\n",

      "print \"\\n Example 15.6 \\n\"\n",

      "# From the psychrometric chart \n",

      "T2 = 38.5 # In degree celsius\n",

      "h1_3 = 60.5-42 # In kJ/kg\n",

      "fi3 = 53.0 # In percentage \n",

      "t4 = 11.2 # In degree celsius\n",

      "W1_2 = 0.0153-0.0083 # In kg vap /kg dry air\n",

      "print \"\\n The temperature of air at the end of the drying process is \",T2 ,\" degree celsius,\\n Heat rejected during the cooling process is \",h1_3 ,\" kJ/kg,\\n The relative humidity is \",fi3 ,\" percent,\\n The dew point temperature at the end of drying process is \",t4 ,\" degree celsius,\\n The moisture removed during the drying process is \",W1_2 ,\" kg vap/kg dry air\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.6 \n",

        "\n",

        "\n",

        " The temperature of air at the end of the drying process is  38.5  degree celsius,\n",

        " Heat rejected during the cooling process is  18.5  kJ/kg,\n",

        " The relative humidity is  53.0  percent,\n",

        " The dew point temperature at the end of drying process is  11.2  degree celsius,\n",

        " The moisture removed during the drying process is  0.007  kg vap/kg dry air\n"

       ]

      }

     ],

     "prompt_number": 2

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.7:pg-638"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "h1 = 57.0 # Enthalpy at state 1 in kJ/kg \n",

      "h2 = h1 # Isenthalpic process\n",

      "h3 = 42.0 # Enthalpy at state 3 in kJ/kg\n",

      "W1 = 0.0065 # Humidity ratio at sate 1\n",

      "W2 = 0.0088 # Humidity ratio at sate 2\n",

      "W3 = W2 # Constant humidity ratio process\n",

      "t2 = 34.5 # Temperature at state 2\n",

      "v1 = 0.896# Specific volume at state 1 in m**3/kg\n",

      "n = 1500.0 # seating capacity of hall\n",

      "a = 0.3 # amount of outdoor air supplied m**3 per person\n",

      "G = (n*a)/0.896  # Amount of dry air supplied\n",

      "CC = (G*(h2-h3)*60)/14000 # Cooling capacity \n",

      "R = G*(W2-W1)*60 # Capacity of humidifier\n",

      "\n",

      "print \"\\n Example 15.7 \\n\"\n",

      "print \"\\n Capacity of the cooling coil is \",CC ,\" tonnes\"\n",

      "print \"\\n Capacity of humidifier is \",R ,\" kg/h\"\n",

      "#The answers vary due to round off error\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.7 \n",

        "\n",

        "\n",

        " Capacity of the cooling coil is  32.2863520408  tonnes\n",

        "\n",

        " Capacity of humidifier is  69.3080357143  kg/h\n"

       ]

      }

     ],

     "prompt_number": 3

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.8:pg-639"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "twb1 = 15.2# Wbt in degree Celsius \n",

      "twb2 = 26.7# Wbt in degree Celsius  \n",

      "tw3 = 30  # Temperature at state 3 in degree Celsius \n",

      "h1 = 43 # Enthalpy at state 1 in kJ/kg\n",

      "h2 = 83.5 # Enthalpy at state 2 in kJ/kg\n",

      "hw = 84 # Enthalpy of water in kJ/kg\n",

      "mw = 1.15 # mass flow rate of water in kg/s\n",

      "W1 = 0.0088 # Humidity ratio of inlet stream \n",

      "W2 = 0.0213 # Humidity ratio of exit stream \n",

      "hw3 = 125.8 # Enthalpy of water entering tower in kJ/kg \n",

      "hm = 84 # Enthalpy of make up water in kJ/kg \n",

      "G = 1 # mass flow rate of dry air in kg/s\n",

      "hw34 = (G/mw)*((h2-h1)-(W2-W1)*hw)  # Enthalpy change\n",

      "tw4 = tw3-(hw34/4.19) # Temperature of water leaving the tower\n",

      "A = tw4-twb1 #Approach of cooling water\n",

      "R = tw3-tw4 #Range of cooling water\n",

      "x = G*(W2-W1) #Fraction of water evaporated \n",

      "\n",

      "print \"\\n Example 15.8\\n\"\n",

      "print \"\\n Temperature of water leaving the tower is \",tw4 ,\" degree celcius\"\n",

      "print \"\\n Range of cooling water is \",R ,\" degree Celsius\"\n",

      "print \"\\n Approach of cooling water is \",A ,\" degree celcius\"\n",

      "print \"\\n Fraction of water evaporated is \",x ,\" kg/kg dry air\"\n",

      "#The answers vary due to round off error"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.8\n",

        "\n",

        "\n",

        " Temperature of water leaving the tower is  21.8128048148  degree celcius\n",

        "\n",

        " Range of cooling water is  8.18719518522  degree Celsius\n",

        "\n",

        " Approach of cooling water is  6.61280481478  degree celcius\n",

        "\n",

        " Fraction of water evaporated is  0.0125  kg/kg dry air\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.9:pg-639"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given that\n",

      "DBT = 40.0 # Dry bulb temperature in degree celsius\n",

      "DBT_ = 25.0 # Dry bulb temperature after cooling and dehumidification in degree celsius\n",

      "RH = 70.0 # Relative humidity in percentage\n",

      "f = 30.0 # Air flow rate in cmm\n",

      "print \"\\n Example 15.9 \\n\"\n",

      "# From the psychrometric chart \n",

      "v1 = 0.9125 # In m**3/kg\n",

      "G = f/v1\n",

      "h5 = 41.5 # In kJ/kg\n",

      "W1 = 0.0182 # In kg vapor/kg dry air \n",

      "h1 = 86.0 # In kJ/kg d.a.\n",

      "W2 = 0.0136 # In kg vapor/kg dry air \n",

      "h2 = 60.0 # In kJ/kg\n",

      "L = G*(h1-h2)/3.5\n",

      "Mo = G*(W1-W2)\n",

      "x = (h2-h5)/(h1-h5)\n",

      "print \"\\n Bypass factor of coolin coil is \",x\n",

      "# Answer veries due to round off error"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.9 \n",

        "\n",

        "\n",

        " Bypass factor of coolin coil is  0.415730337079\n"

       ]

      }

     ],

     "prompt_number": 5

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.10:pg-641"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given that\n",

      "c = 75.0 # Capacity of classroom in no of perasons\n",

      "DBT1 = 10.0 # Outdoor Dry bulb temperature in degree celsius\n",

      "WBT1 = 8.0 # Outdoor Wet bulb temperature in degree celsius\n",

      "DBT2 = 20.0 # Indoor Dry bulb temperature in degree celsius\n",

      "RH2 = 50.0 # Relative humidity in percentage\n",

      "x =0.5 # Bypass factor\n",

      "f = 0.3 # Air flow rate per person in cmm\n",

      "print \"\\n Example 15.10 \\n\"\n",

      "# From the psychrometric chart \n",

      "W1 = 0.0058 # In kg moisture/kg d.a.\n",

      "h1 = 24.5 # In kJ/kg\n",

      "h2 = 39.5 # In kJ/kg\n",

      "h3 = h2\n",

      "W3 = 0.0074 # In kg moisture/kg d.a.\n",

      "t2 = 25.0 # In degree celsius\n",

      "v1 = .81 # In m**3/kg d.a.\n",

      "G = f*c/v1\n",

      "C = G*(h2-h1)/60\n",

      "t4 = (t2-x*DBT1)/(1-x)\n",

      "ts = t4\n",

      "C_H = G*(W3-W1)*60\n",

      "print \"\\n Capacity of heating coil is \",C ,\" kW,\\n Surface temperature of heating coil is \",ts ,\" degree celsius,\\n Capacity of humidifier is \",C_H ,\" kg/h \""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.10 \n",

        "\n",

        "\n",

        " Capacity of heating coil is  6.94444444444  kW,\n",

        " Surface temperature of heating coil is  40.0  degree celsius,\n",

        " Capacity of humidifier is  2.66666666667  kg/h \n"

       ]

      }

     ],

     "prompt_number": 6

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.11:pg-641"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given that\n",

      "DBT = 31.0 # Dry bulb temperature in degree celsius\n",

      "WBT = 18.5 # Wet bulb temperature in degree celsius\n",

      "t = 4.4 # Effective surface temperature of coil in degree celsius\n",

      "RE = 12.5 # Refrigeration effect by the coil in kW\n",

      "f= 39.6 # Air flow rate in cmm\n",

      "print \"\\n Example 15.11 \\n\"\n",

      "# From the fig. given in the example\n",

      "ws = 5.25 #In g/kg d.a.\n",

      "hs = 17.7 #In kJ/kg d.a.\n",

      "v1 = 0.872 # In m**3/kg d.a.\n",

      "h1 = 52.5 # In kJ/kg d.a.\n",

      "w1 = 8.2 # In g/kg d.a.\n",

      "G = f/v1\n",

      "h2 = h1-(RE*60)/G\n",

      "w2 = w1-((h1-h2)/(h1-hs))*(w1-ws)\n",

      "# From the psychrometric chart\n",

      "t2 = 18.6 # In degree celsius\n",

      "t_ = 12.5 # In degree celsius\n",

      "x = (h2-hs)/(h1-hs)\n",

      "print \"\\n DBT of air leaving the coil is \",t2 ,\" degree celsius,\\n WBT of air leaving the coil is \",t_ ,\" degree celsius,\\n Coil bypass factor is \",x  \n",

      "# Answer veries due to round off error\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.11 \n",

        "\n",

        "\n",

        " DBT of air leaving the coil is  18.6  degree celsius,\n",

        " WBT of air leaving the coil is  12.5  degree celsius,\n",

        " Coil bypass factor is  0.525426680599\n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.12:pg-641"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given that\n",

      "c = 75.0 # Capacity of classroom in no of perasons\n",

      "DBT1 = 35.0 # Outdoor Dry bulb temperature in degree celsius\n",

      "RH1 = 70.0 # Outdoor relative humidity in percentage\n",

      "DBT2 = 20.0 # Indoor Dry bulb temperature in degree celsius \n",

      "RH1 = 60.0 # Indoor relative humidity in percentage\n",

      "DPT = 10.0 # Cooling coil dew point temperature in degree celsius\n",

      "x =0.25 # Bypass factor\n",

      "f = 300.0 # Air flow rate in cmm\n",

      "print \"\\n Example 15.12 \\n\"\n",

      "# From the psychrometric chart \n",

      "W1 = 0.0246 # In kg vap./kg d.a.\n",

      "h1 = 98.0 # In kJ/kg\n",

      "v1 = 0.907 # In m**3/kg d.a.\n",

      "h3 = 42.0 # In kJ/kg\n",

      "W3 = 0.0088 # In kg moisture/kg d.a.\n",

      "h2 = 34.0 # In kJ/kg\n",

      "hs = 30.0 # In kJ/kg\n",

      "t2 = 12.0 # In degree celsius\n",

      "G = f/v1\n",

      "C = G*(h1-h2)/(60*3.5)\n",

      "X = (h2-hs)/(h1-hs)\n",

      "C_ = G*(h3-h2)/60\n",

      "t4 = (DBT2-x*t2)/(1-x)\n",

      "C_H = G*(W1-W3)\n",

      "print \"\\n Capacity of cooling coil is \",C ,\" tonnes,\\n Bypass factor of cooling coil is \",X ,\",\\n Capacity of heating coil is \",t4 ,\" kW,\\n Surface temperature of heating coil is \",C_ ,\" degree celsius,\\n Mass of water vapor removed is \",C_H ,\" kg/min \"\n",

      "#Answers veries due to round off error"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " \n",

        " Example 15.12 \n",

        "\n",

        "\n",

        " Capacity of cooling coil is  100.803276106  tonnes,\n",

        " Bypass factor of cooling coil is  0.0588235294118 ,\n",

        " Capacity of heating coil is  22.6666666667  kW,\n",

        " Surface temperature of heating coil is  44.1014332966  degree celsius,\n",

        " Mass of water vapor removed is  5.22601984564  kg/min \n"

       ]

      }

     ],

     "prompt_number": 10

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex15.13:pg-641"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# at 15 degree Celsius\n",

      "Psat1 = 0.01705  # Saturation pressure in bar\n",

      "hg1 = 2528.9 # Enthalpy in kJ/kg\n",

      "# At 35 degree Celsius\n",

      "Psat2 = 0.05628 # Saturation pressure in bar\n",

      "hg2 = 2565.3 # Enthalpy in kJ/kg\n",

      "fi1 = 0.55# Humidity ratio at state 1\n",

      "Pw1 = fi1*Psat1 # water vapor pressure at state 1\n",

      "fi2 = 1.0 # Humidity ratio at state 2\n",

      "Pw2 = fi2*Psat2 # water vapor pressure at state 2 \n",

      "P = 0.1 # Atmospheric pressure in MPa\n",

      "W1 = (0.622*Pw1)/(P*10-Pw1)\n",

      "W2 = (0.622*Pw2)/(P*10-Pw2)\n",

      "MW = W2-W1 # unit mass flow rate of water\n",

      "t2 = 35.0 # Air exit temperature in degree Celsius\n",

      "t1 = 14.0 # make up water inlet temperature in degree Celsius \n",

      "m_dot = 2.78 # water flow rate in kg/s\n",

      "cpa = 1.005 # Constant pressure heat capacity ratio in kJ/kg\n",

      "h43 = 35*4.187 # Enthalpy change\n",

      "h5 = 14*4.187 # Enthalpy at state 5in kJ/kg\n",

      "m_dot_w = (-(W2-W1)*h5 - W1*hg1 + W2*hg2 + cpa*(t2-t1))/(h43) \n",

      "R = m_dot/m_dot_w \n",

      "MW = (W2-W1)*R #Make up water flow rate\n",

      "RWA = R*(1+W1)\n",

      "R = 0.287 # Gas constant \n",

      "V_dot = (RWA*R*(t1+273))/(P*1e03)  # Volume flow rate of air\n",

      "print \"\\n Example 15.13\\n\"\n",

      "print \"\\n Make up water flow rate is \",MW ,\" kg/s\"\n",

      "print \"\\n Volume flow rate of air is \",V_dot ,\" m**3/s\"\n",

      "#The answers vary due to round off error\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Example 15.13\n",

        "\n",

        "\n",

        " Make up water flow rate is  0.127715382722  kg/s\n",

        "\n",

        " Volume flow rate of air is  3.39095173631  m**3/s\n"

       ]

      }

     ],

     "prompt_number": 11

    }

   ],

   "metadata": {}

  }

 ]

}