summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter13.ipynb
blob: 7d2de00af4774d09fa3e39ea0eec51fdf418cdfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 13: Gas power cycle"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.1:pg-554"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.1\n",
      "\n",
      "\n",
      " Cycle efficiency is  56.4724718352  percent\n",
      "\n",
      " Maximum temperature in the cycle is  3632.38927303  K\n",
      "\n",
      " Maximum pressure in the cycle is  9.43477733254  MPa\n",
      "\n",
      " Mean effective pressure is  1.53325865881  MPa\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "T1 = 35 # Air inlet temperature in degree Celsius\n",
    "P1 = 0.1 # Air inlet pressure in MPa\n",
    "Q1 = 2100 # Heat supply in kJ/kg\n",
    "R = 0.287 # gas constant\n",
    "rk = 8 # Compression ratio\n",
    "g = 1.4 # Heat capacity ratio\n",
    "n_cycle = 1-(1/rk**(g-1)) # cycle efficiency \n",
    "v1 = (R*(T1+273))/(P1*1e3) # Initial volume\n",
    "v2 = v1/8 # Volume after compression\n",
    "T2 = (T1+273)*(v1/v2)**(g-1) # Temperature after compression\n",
    "cv = 0.718 # Constant volume heat capacity in kJ/kg\n",
    "T3 = Q1/cv + T2 # Temperature at after heat addition\n",
    "P21 = (v1/v2)**g # Pressure ratio\n",
    "P2 = P21*P1 # Pressure after compression\n",
    "P3 = P2*(T3/T2) # Pressure after heat addition\n",
    "Wnet = Q1*n_cycle # Net work output\n",
    "Pm = Wnet/(v1-v2) # Mean pressure\n",
    "print \"\\n Example 13.1\\n\"\n",
    "print \"\\n Cycle efficiency is \",n_cycle*100 ,\" percent\"\n",
    "print \"\\n Maximum temperature in the cycle is \",T3 ,\" K\"\n",
    "print \"\\n Maximum pressure in the cycle is \",P3 ,\" MPa\"\n",
    "print \"\\n Mean effective pressure is \",Pm/1e3 ,\" MPa\"\n",
    "#The answers vary due to round off error"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.2:pg-555"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.2\n",
      "\n",
      "\n",
      " Air standard efficiency is  59.8676909231  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "rk = 14.0 # Compression ratio\n",
    "k = 6.0 # cutoff percentage ratio\n",
    "rc = k/100*(rk-1)+1\n",
    "g = 1.4 # Heat capacity ratio\n",
    "n_diesel = 1.0-((1.0/g))*(1.0/rk**(g-1))*((rc**(g-1))/(rc-1)) # Cycle efficiency\n",
    "print \"\\n Example 13.2\\n\"\n",
    "print \"\\n Air standard efficiency is \",n_diesel*100 ,\" percent\"\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.3:pg-556"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.3\n",
      "\n",
      "\n",
      " Cut-off ratio is  2.00789702047\n",
      "\n",
      " Heat supplied per kg of air is  884.346993978  kJ/kg\n",
      "\n",
      " Cycle efficiency is  61.3340410825  percent\n",
      "\n",
      " Mean effective pressure is  699.968703831  kPa\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "rk = 16 # Compression ratio\n",
    "T1 = 15 # Air inlet temperature in degree Celsius\n",
    "P1 = 0.1 # Air inlet pressure in MPa\n",
    "T3 = 1480 # Highest temperature in cycle in degree Celsius\n",
    "g = 1.4 # Heat capacity ratio\n",
    "R = 0.287 # Gas constant\n",
    "T2 = (T1+273)*(rk**(g-1)) # Temperature after compression\n",
    "rc =  (T3+273)/T2 # cut off ratio\n",
    "cp = 1.005 # Constant pressure heat constant\n",
    "cv = 0.718 # Constant volume heat constant\n",
    "Q1 = cp*(T3+273-T2) # Heat addition\n",
    "T4 = (T3+273)*((rc/rk)**(g-1)) # Temperature after heat addition\n",
    "Q2 = cv*(T4-T1-273) # Heat rejection\n",
    "n = 1-(Q2/Q1) # cycle efficiency\n",
    "n_ = 1-((1/g))*(1/rk**(g-1))*((rc**(g-1))/(rc-1)) # cycle efficiency from another formula\n",
    "Wnet = Q1*n # Net work \n",
    "v1 = (R*(T1+273))/(P1*1e3) # Volume before compression\n",
    "v2 = v1/rk # Volume after compression\n",
    "Pm = Wnet/(v1-v2) # Mean pressure\n",
    "print \"\\n Example 13.3\\n\"\n",
    "print \"\\n Cut-off ratio is \",rc\n",
    "print \"\\n Heat supplied per kg of air is \",Q1 ,\" kJ/kg\"\n",
    "print \"\\n Cycle efficiency is \",n*100 ,\" percent\"\n",
    "print \"\\n Mean effective pressure is \",Pm ,\" kPa\"\n",
    "#The answers vary due to round off error"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.4:pg-558"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.4\n",
      "\n",
      "\n",
      " Efficiency of the cycle is  66.3143793932  percent\n",
      "\n",
      " Mean effective pressure is  4.45799460092  bar\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "T1 = 50.0 # Temperature before compression stroke in degree Celsius\n",
    "rk = 16.0 # Compression ratio\n",
    "g = 1.4 # Heat capacity ratio\n",
    "P3 = 70.0 # Maximum cycle pressure in bar\n",
    "cv = 0.718 # Constant volume heat addition capacity\n",
    "cp = 1.005 # Constant pressure heat addition capacity\n",
    "R = 0.287 # Gas constant\n",
    "T2 = (T1+273)*((rk**(g-1))) #Temperature after compression stroke \n",
    "P1 = 1.0 # Pressure before compression in bar\n",
    "P2 = P1*(rk)**g # Pressure after compression\n",
    "T3 = T2*(P3/P2) # Temperature after constant volume heat addition\n",
    "Q23 = cv*(T3-T2) # Constant volume heat added\n",
    "T4 = (Q23/cp)+T3 # Temperature after constant pressure heat addition\n",
    "v43 = T4/T3 # cut off ratio \n",
    "v54 = rk/v43 # Expansion ratio\n",
    "T5 = T4*(1/v54)**(g-1) # Temperature after expansion\n",
    "P5 = P1*(T5/(T1+273)) # Pressure after expansion\n",
    "Q1 = cv*(T3-T2)+cp*(T4-T3) # Total heat added\n",
    "Q2 = cv*(T5-T1-273) # Heat rejected\n",
    "n_cycle = 1-(Q2/Q1) # Cycle efficiency\n",
    "v1 = (R*(T1+273))/(P1*1e2) # Volume before compression \n",
    "v2 = (1/16)*v1 # Swept volume\n",
    "Wnet = Q1*n_cycle # Net work done\n",
    "Pm = Wnet/(v1-v2) # Mean pressure\n",
    "print \"\\n Example 13.4\\n\"\n",
    "print \"\\n Efficiency of the cycle is \",n_cycle*100 ,\" percent\"\n",
    "print \"\\n Mean effective pressure is \",Pm/100 ,\" bar\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.5:pg-559"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.5\n",
      "\n",
      "\n",
      " The percentage increase in cycle efficiency \n",
      " due to regeneration is  41.4076056717  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "P1 = 0.1 # Air pressure at turbine inlet in MPa\n",
    "T1 = 30 # Air temperature at turbine inlet in degree Celsius\n",
    "T3 = 900 # Maximum cycle temperature at turbine inlet in degree Celsius\n",
    "rp = 6 # Pressure ratio\n",
    "nt = 0.8 # Turbine efficiency\n",
    "nc = 0.8# Compressor efficiency\n",
    "g = 1.4 # Heat capacity ratio\n",
    "cv = 0.718 # Constant volume heat capacity\n",
    "cp = 1.005 # Constant pressure heat capacity\n",
    "R = 0.287 # Gas constant\n",
    "T2s = (T1+273)*(rp)**((g-1)/g)\n",
    "T4s = (T3+273)/((rp)**((g-1)/g))\n",
    "T21 = (T2s-T1-273)/nc  # Temperature raise due to compression\n",
    "T34 = nt*(T3+273-T4s) # Temperature drop due to expansion\n",
    "Wt = cp*T34 # Turbine work\n",
    "Wc = cp*T21 # Compressor work\n",
    "T2 = T21+T1+273 # Temperature after compression\n",
    "Q1 = cp*(T3+273-T2) # Heat added\n",
    "n = (Wt-Wc)/Q1 # First law efficiency\n",
    "T4 = T3+273-T34 # Temperature after expansion\n",
    "T6 = 0.75*(T4-T2) + T2 # Regeneration temperature \n",
    "Q1_ = cp*(T3+273-T6)# Heat added\n",
    "n_ = (Wt-Wc)/Q1_ #cycle efficiency\n",
    "I = (n_-n)/n # Fractional increase in cycle efficiency\n",
    "print \"\\n Example 13.5\\n\"\n",
    "print \"\\n The percentage increase in cycle efficiency \\n due to regeneration is \",I*100 ,\" percent\"\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.6:pg-560"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.6\n",
      "\n",
      "\n",
      " Maximum work done per kg of air is  239.466740619  kJ/kg\n",
      "\n",
      " Cycle efficiency is  47.1237354986  percent\n",
      "\n",
      " Ratio of Brayton and Carnot efficiency is  0.654123779948\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "cp = 1.005 # Constant pressure heat capacity\n",
    "Tmax = 1073.0 # Maximum cycle temperature in K\n",
    "Tmin = 300.0# Minimum cycle temperature in K\n",
    "Wnet_max = cp*(math.sqrt(Tmax)-math.sqrt(Tmin))**2 # maximum work\n",
    "n_cycle = 1.0-math.sqrt(Tmin/Tmax) # cycle efficiency\n",
    "n_carnot = 1.0-(Tmin/Tmax) # Carnot efficiency\n",
    "r = n_cycle/n_carnot # Efficiency ratio\n",
    "print \"\\n Example 13.6\\n\"\n",
    "print \"\\n Maximum work done per kg of air is \",Wnet_max ,\" kJ/kg\"\n",
    "print \"\\n Cycle efficiency is \",n_cycle*100 ,\" percent\"\n",
    "print \"\\n Ratio of Brayton and Carnot efficiency is \",r\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.7:pg-561"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.7\n",
      "\n",
      "\n",
      " The thermal efficiency of the cycle is  40.0663025288  percent\n",
      "\n",
      " Work ratio is  0.544951697902\n",
      "\n",
      " Power output is  40.0663025288  MW\n",
      "\n",
      " Energy flow rate of the exhaust gas stream is  20.5297861501  MW\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "rp = 6 # pressure ratio\n",
    "g = 1.4 # Heat capacity ratio\n",
    "cv = 0.718 # Constant volume heat capacity\n",
    "cp = 1.005 #Constant pressure heat capacity\n",
    "R = 0.287 # Gas constant\n",
    "T1 = 300 # Minimum temperature in K\n",
    "T3 = 1100 # Maximum cycle temperature in K\n",
    "T0 = 300 # Atmospheric temperature in K\n",
    "n_cycle = 1-(1/rp**((g-1)/g)) # cycle efficiency\n",
    "T2 = (T1)*(rp**((g-1)/g)) # Temperature after compression\n",
    "T4 = (T3)/(rp**((g-1)/g)) # Temperature after expansion\n",
    "Wc = cp*(T2-T1) # Compressor work\n",
    "Wt = cp*(T3-T4) # Turbine work\n",
    "WR = (Wt-Wc)/Wt # Work ratio\n",
    "Q1 = 100 # Heat addition in MW\n",
    "PO = n_cycle*Q1 # Power output\n",
    "m_dot = (Q1*1e06)/(cp*(T3-T2)) # Mass flow rate\n",
    "R = m_dot*cp*T0*((T4/T0)-1-math.log(T4/T0)) # Exergy flow rate\n",
    "print \"\\n Example 13.7\\n\"\n",
    "print \"\\n The thermal efficiency of the cycle is \",n_cycle*100 ,\" percent\"\n",
    "print \"\\n Work ratio is \",WR\n",
    "print \"\\n Power output is \",PO ,\" MW\"\n",
    "print \"\\n Energy flow rate of the exhaust gas stream is \",R/1e6 ,\" MW\"\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.8:pg-562"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.8\n",
      "\n",
      "\n",
      " Percentage of air that may be taken from the compressor is  11.5044247788  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "nc = 0.87 # Compressor efficiency \n",
    "nt = 0.9 # Turbine efficiency\n",
    "T1 = 311 # Compressor inlet temperature in K\n",
    "rp = 8 # compressor pressure ratio\n",
    "P1 = 1 # Initial pressure in atm\n",
    "T3 = 1367 # Turbine inlet temperature\n",
    "P2 = P1*rp # Final pressure \n",
    "P3 = 0.95*P2 # Actual pressure after compression\n",
    "P4 = 1 # Atmospheric pressure\n",
    "g = 1.4 # Heat capacity ratio\n",
    "cv = 0.718 # Constant volume heat capacity\n",
    "cp = 1.005 # Constant pressure heat capacity\n",
    "R = 0.287 # Gas constant\n",
    "# With no cooling\n",
    "T2s = T1*((P2/P1)**((g-1)/g)) # Ideal temperature after compression\n",
    "T2 = T1 + (T2s-T1)/0.87 # Actual temperature after compression\n",
    "T4s = T3*(P4/P3)**((g-1)/g) # Ideal temperature after expansion\n",
    "n = (((T3-T4s)*nt)-((T2s-T1)/nc))/(T3-T2) # cycle efficiency\n",
    "# With cooling\n",
    "n_cycle = n-0.05\n",
    "x = 0.13 # Fluid quality\n",
    "r = x/(x+1) # \n",
    "print \"\\n Example 13.8\\n\"\n",
    "print \"\\n Percentage of air that may be taken from the compressor is \",r*100 ,\" percent\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.9:pg-563"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.9 \n",
      "\n",
      "\n",
      " Optimum specific output is  1.0\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#Given that\n",
    "nc = 0.85 # Compressor efficiency\n",
    "nt = 0.9 # Turbine efficiency\n",
    "r = 3.5 # Ratio of max and min temperature \n",
    "gama = 1.4 # Ratio of heat capacities for air\n",
    "print \"\\n Example 13.9 \\n\"\n",
    "x = (gama-1)/gama\n",
    "r_opt = ((nc*nt*r)**(2/3))**(1/x)\n",
    "print \"\\n Optimum specific output is \",r_opt\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.10:pg-566"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.10 \n",
      "\n",
      "\n",
      " The temperature of the gases at the turbine exit is  1114.47439653  K,\n",
      " The pressure of the gases at the turbine exit is  311.998817219  kN/m**2,\n",
      " The velocity of gases at the nozzle exit is  1.0  m/sec,\n",
      " The propulsive efficiency of the cycle is  -10.6673736259  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#Given that\n",
    "v = 300.0 # Aircraft velocity in m/s\n",
    "p1 = 0.35 # Pressure in bar\n",
    "t1 = -40.0 # Temperature in degree centigrade\n",
    "rp = 10.0 # The pressure ratio of compressor \n",
    "t4 = 1100.0 # Temperature of gases at turbine intlet in degree centigrade\n",
    "ma = 50.0 # Mass flow rate of air at the inlet of compressor in kg/s\n",
    "cp = 1.005 # Heat capacity of air at constant pressure in kJ/kg-K\n",
    "gama=1.4 # Ratio of heat capacities for air\n",
    "print \"\\n Example 13.10 \\n\"\n",
    "T1 = t1+273\n",
    "T4 = t4+273\n",
    "T2 = T1 + (v**2)/(2*cp)*(10**-3)\n",
    "p2 = p1*(100)*((T2/T1)**(gama/(gama-1)))\n",
    "p3 = rp*p2\n",
    "p4 =p3\n",
    "T3 = T2*((p3/p2)**((gama-1)/gama))\n",
    "T5 = T4-T3+T2\n",
    "p5 = ((T5/T4)**(gama/(gama-1)))*(p4)\n",
    "p6 = p1*100\n",
    "T6 = T5*((p6/p5)**((gama-1)/gama))\n",
    "V6 = (2*cp*(T5-T6)*1000)**(1/2)\n",
    "Wp = ma*(V6-v)*v*(10**-6)\n",
    "Q1 = ma*cp*(T4-T3)*(10**-3)\n",
    "np = Wp/Q1\n",
    "print \"\\n The temperature of the gases at the turbine exit is \",T5 ,\" K,\\n The pressure of the gases at the turbine exit is \",p5 ,\" kN/m**2,\\n The velocity of gases at the nozzle exit is \",V6 ,\" m/sec,\\n The propulsive efficiency of the cycle is \",np*100 ,\" percent\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex13.11:pg-567"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 13.11 \n",
      "\n",
      "\n",
      " Air fuel ratio is  39.6515678976\n",
      "\n",
      " Overall efficiency of combined plant is  53.5993550102  percent \n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "Ta = 15 # Atmospheric temperature in degree Celsius \n",
    "rp = 8 # pressure ratio\n",
    "g = 1.33 # heat capacity ratio for gas\n",
    "g1 = 1.40 # heat capacity ratio for air\n",
    "cv = 0.718 # Constant volume heat capacity\n",
    "cpa = 1.005 # Constant pressure heat capacity for air\n",
    "cpg = 1.11 # Constant pressure heat capacity for gas\n",
    "R = 0.287 # Gas constant\n",
    "Tb = (Ta+273)*(rp)**((g1-1)/g1) # Temperature after compression\n",
    "Tc = 800  # Temperature after heat addition in degree Celsius\n",
    "Td = (Tc+273)/((rp)**((g-1)/g)) # Temperature after expansion\n",
    "Wgt = cpg*(Tc+273-Td)-cpa*(Tb-Ta-273)\n",
    "Q1 = cpg*(Tc+273-Tb)\n",
    "Q1_ = cpg*(Tc+273-Td)\n",
    "h1 = 3775  # Enthalpy at state 1 in kJ/kg\n",
    "h2 = 2183 # Enthalpy at state2 in kJ/kg\n",
    "h3 = 138 # Enthalpy at state3 in kJ/kg\n",
    "h4 = h3 # Isenthalpic process\n",
    "Q1_st = h1-h3 # Total heat addition\n",
    "Q_fe = cpg*(Tc-100) # Heat transfer by steam\n",
    "was = Q1_st/Q_fe # air steam mass ratio\n",
    "Wst = h1-h2# work done by steam turbine\n",
    "PO = 190e03 # Power output in kW\n",
    "ws = PO/(was*Wgt+Wst)# steam flow rate\n",
    "wa = was*ws # Air flow rate\n",
    "CV = 43300 # Calorific volume of fuel in kJ/kg\n",
    "waf = CV/(Q1+Q1_) # Air fuel ratio\n",
    "FEI = (wa/waf)*CV # Fuel energy input\n",
    "noA = PO/FEI # combined cycle efficiency\n",
    "\n",
    "print \"\\n Example 13.11 \\n\"\n",
    "print \"\\n Air fuel ratio is \",waf\n",
    "print \"\\n Overall efficiency of combined plant is \",noA*100,\" percent \"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}