summaryrefslogtreecommitdiff
path: root/Basic_And_Applied_Thermodynamics_by_P._K._Nag/Chapter12.ipynb
blob: 540dfc4db9f5fec158ede483c3e58f5fa1a38b9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 12: Vapour power cycle"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.1:pg-492"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.1\n",
      "\n",
      " The work required in saturated liquid form is  -0.9387  kJ/kg\n",
      "\n",
      " The work required in saturated vapor form is  -520.0  kJ/kg\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Part (a)\n",
    "P1 = 1 # Initial pressure in bar\n",
    "P2 = 10 # Final pressure in bar\n",
    "vf = 0.001043 # specific volume of liquid in m**3/kg\n",
    "Wrev = vf*(P1-P2)*1e5 # Work done\n",
    "\n",
    "print \"\\n Example 12.1\"\n",
    "print \"\\n The work required in saturated liquid form is \",Wrev/1000 ,\" kJ/kg\"\n",
    "#The answers vary due to round off error\n",
    "\n",
    "# Part (b)\n",
    "h1 = 2675.5 # Enthalpy at state 1 in kJ/kg\n",
    "s1 = 7.3594 # Entropy at state 1 kJ/kgK\n",
    "s2 = s1 # Isentropic process\n",
    "h2 = 3195.5 # Enthalpy at state 2 kJ/kg\n",
    "Wrev1 = h1-h2 # Work done\n",
    "print \"\\n The work required in saturated vapor form is \",Wrev1 ,\" kJ/kg\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.2:pg-493"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.2\n",
      "\n",
      " Net work per kg of steam is  969.599095338  kJ/kg\n",
      "\n",
      " Cycle efficiency is  32.4996706636  percent\n",
      "\n",
      "\n",
      " Percentage reduction in net work per kg of steam is  20.093190186  percent\n",
      "\n",
      " Percentage reduction in cycle efficiency is  20.093190186  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "h1 = 3159.3 # Enthalpy at state 1 in kJ/kg\n",
    "s1 = 6.9917 # Entropy at state 1 in kJ/kgK\n",
    "h3 = 173.88  # Enthalpy at state 3 in kJ/kg\n",
    "s3 = 0.5926 # Entropy at state 3 in kJ/kgK\n",
    "sfp2 = s3 # Isentropic process\n",
    "hfp2 = h3 # Isenthalpic process\n",
    "hfgp2 = 2403.1 # Latent heat of vaporization in kJ/kg\n",
    "sgp2 = 8.2287 # Entropy of gas in kJ/kgK\n",
    "vfp2 = 0.001008 # Specific volume in m**3/kg\n",
    "sfgp2 = 7.6361# Entropy of liquid in kJ/kgK\n",
    "x2s = (s1-sfp2)/(sfgp2)# Steam quality\n",
    "h2s = hfp2+(x2s*hfgp2) # Enthalpy at state 2s\n",
    "# Part (a)\n",
    "P1 = 20 # Turbine inlet pressure in bar\n",
    "P2 = 0.08 # Turbine exit pressure in bar\n",
    "h4s = vfp2*(P1-P2)*1e2+h3  # Enthalpy at state 4s\n",
    "Wp = h4s-h3 # Pump work\n",
    "Wt = h1-h2s # Turbine work\n",
    "Wnet = Wt-Wp # Net work \n",
    "Q1 = h1-h4s # Heat addition\n",
    "n_cycle = Wnet/Q1# Cycle efficiency\n",
    "print \"\\n Example 12.2\"\n",
    "print \"\\n Net work per kg of steam is \",Wnet ,\" kJ/kg\"\n",
    "#The answer provided in the textbook is wrong\n",
    "\n",
    "print \"\\n Cycle efficiency is \",n_cycle*100 ,\" percent\"\n",
    "\n",
    "# Part (b)\n",
    "n_p = 0.8 # pump efficiency\n",
    "n_t = 0.8# Turbine efficiency\n",
    "Wp_ = Wp/n_p # Pump work\n",
    "Wt_ = Wt*n_t # Turbine work\n",
    "Wnet_ = Wt_-Wp_# Net work\n",
    "P = 100*((Wnet-Wnet_)/Wnet) # Percentage reduction in net work\n",
    "n_cycle_ = Wnet_/Q1 # cycle efficiency\n",
    "P_ = 100*((n_cycle-n_cycle_)/n_cycle) #reduction in cycle\n",
    "print \"\\n\\n Percentage reduction in net work per kg of steam is \",P ,\" percent\"\n",
    "print \"\\n Percentage reduction in cycle efficiency is \",P_ ,\" percent\"\n",
    "\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.3:pg-495"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.3\n",
      "\n",
      " The greatest allowable steam pressure at the turbine inlet is  16.832  bar\n",
      "\n",
      " Rankine cycle efficiency is  31.684100869  percent\n",
      "\n",
      " Mean temperature of heat addition is  187.657819629  degree celcius\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "P1 = 0.08 # Exhaust pressure in bar\n",
    "sf = 0.5926 # Entropy of fluid in kJ/kgK\n",
    "x2s = 0.85 # Steam quality\n",
    "sg = 8.2287 # Entropy of gas in kJ/kgK\n",
    "s2s = sf+(x2s*(sg-sf)) # Entropy of mixture at state 2s in kJ/kgK\n",
    "s1 = s2s # Isentropic process\n",
    "P2 = 16.832 # by steam table opposite to s1 in bar\n",
    "h1 = 3165.54 # Enthalpy at state 1 in kJ/kg\n",
    "h2s = 173.88 + (0.85*2403.1) # Enthalpy at state 2s in kJ/kg\n",
    "h3 = 173.88# Enthalpy at state 3 in kJ/kg\n",
    "vfp2 = 0.001 # specific volume of liquid in m**3/kg\n",
    "h4s = h3 + (vfp2*(P2-P1)*100)# Enthalpy at state 4s in kJ/kg\n",
    "Q1 = h1-h4s # Heat addition\n",
    "Wt = h1-h2s # Turbine work\n",
    "Wp = h4s-h3 # Pump work\n",
    "n_cycle = 100*((Wt-Wp)/Q1) # Cycle efficiency\n",
    "Tm = (h1-h4s)/(s2s-sf) # Mean temperature of heat addition\n",
    "\n",
    "print \"\\n Example 12.3\"\n",
    "print \"\\n The greatest allowable steam pressure at the turbine inlet is \",P2 ,\" bar\"\n",
    "\n",
    "print \"\\n Rankine cycle efficiency is \",n_cycle ,\" percent\"\n",
    "\n",
    "print \"\\n Mean temperature of heat addition is \",Tm-273 ,\" degree celcius\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.4:pg-496"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.4 \n",
      "\n",
      "\n",
      " Quality at turbine exhaust is  0.88\n",
      "\n",
      " Cycle efficiency is  43.9043470625  percent\n",
      "\n",
      " Steam rate is  2.18181818182  kg/kW h\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "h1 = 3465 # Enthalpy at state 1 in kJ/kgK\n",
    "h2s = 3065 #Enthalpy at state 2s in kJ/kgK \n",
    "h3 = 3565 #Enthalpy at state 3 in kJ/kgK\n",
    "h4s = 2300 # Enthalpy at state 4s in kJ/kgK\n",
    "x4s = 0.88 # Steam quality at state 4s\n",
    "h5 = 191.83# Enthalpy at state 5 in kJ/kgK\n",
    "v = 0.001 # specific volume in m**3/kg\n",
    "P = 150 # Boiler outlet pressure in bar\n",
    "Wp = v*P*100 # Pump work\n",
    "h6s = 206.83 # Enthalpy at state 6s in kJ/kgK\n",
    "Q1 = (h1-h6s)+(h3-h2s) # Heat addition\n",
    "Wt = (h1-h2s)+(h3-h4s) # Turbine work\n",
    "Wnet = Wt-Wp # Net work\n",
    "n_cycle = 100*Wnet/Q1 # cycle efficiency\n",
    "sr = 3600/Wnet #Steam rate\n",
    "\n",
    "print \"\\n Example 12.4 \\n\"\n",
    "print \"\\n Quality at turbine exhaust is \",0.88\n",
    "print \"\\n Cycle efficiency is \",n_cycle ,\" percent\"\n",
    "print \"\\n Steam rate is \",sr ,\" kg/kW h\"\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.5:pg-497"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.5\n",
      "\n",
      "\n",
      " Efficiency of the cycle is  36.0687573387  percent\n",
      "\n",
      " Steam rate of the cycle is  3.85264705574  kg/kW h\n",
      "\n",
      " Increase in temperature due to regeneration is  27.3862065182  degree centigrade\n",
      "\n",
      " Increase in steam rate due to regeneration is  0.385518227773  kg/kW h\n",
      "\n",
      " Increase in Efficiency of the cycle due to regeneration is  1.90293971596  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "h1 = 3230.9 # Enthalpy at state 1 in kJ/kg\n",
    "s1 = 6.9212 # Entropy at state 1 in kJ/kgK\n",
    "s2 = s1 # Isentropic process\n",
    "s3 = s1 # Isentropic process\n",
    "h2 = 2796  # Enthalpy at state 2 in kJ/kg\n",
    "sf = 0.6493 # ENtropy of fluid onkJ/kgK\n",
    "sfg = 7.5009 # Entropy change due to vaporization\n",
    "x3 = (s3-sf)/sfg # steam quality\n",
    "h3 = 191.83 + x3*2392.8 # Enthalpy at state 3\n",
    "h4 = 191.83 # Enthalpy at state 4 in kJ/kg\n",
    "h5 = h4 # Isenthalpic process\n",
    "h6 = 640.23 # Enthalpy at state 6 in kJ/kg\n",
    "h7 = h6 # Isenthalpic process\n",
    "m = (h6-h5)/(h2-h5) # regenerative mass\n",
    "Wt = (h1-h2)+(1-m)*(h2-h3) # turbine work\n",
    "Q1 = h1-h6 # Heat addition\n",
    "n_cycle = 100*Wt/Q1 # Cycle efficiency\n",
    "sr = 3600/Wt # Steam rate\n",
    "s7 = 1.8607  # Entropy at state 7 in kJ/kgK\n",
    "s4 = 0.6493 # Entropy at state 4 in kJ/kgK \n",
    "Tm = (h1-h7)/(s1-s7) # Mean temperature of heat addition with regeneration\n",
    "Tm1 = (h1-h4)/(s1-s4) # Mean temperature of heat addition without regeneration\n",
    "dT = Tm-Tm1 # Change in temperature\n",
    "Wt_ = h1-h3 # Turbine work\n",
    "sr_ = 3600/Wt_ # Steam rate\n",
    "dsr = sr-sr_# Change in steam rate\n",
    "n_cycle_ = 100*(h1-h3)/(h1-h4) # Cycle effciency\n",
    "dn = n_cycle-n_cycle_# Change in efficiency\n",
    "print \"\\n Example 12.5\\n\"\n",
    "print \"\\n Efficiency of the cycle is \",n_cycle ,\" percent\"\n",
    "\n",
    "print \"\\n Steam rate of the cycle is \",sr ,\" kg/kW h\"\n",
    "#The answer provided in the textbook is wrong\n",
    "\n",
    "print \"\\n Increase in temperature due to regeneration is \",dT ,\" degree centigrade\"\n",
    "print \"\\n Increase in steam rate due to regeneration is \",dsr ,\" kg/kW h\"\n",
    "#The answer provided in the textbook is wrong\n",
    "\n",
    "print \"\\n Increase in Efficiency of the cycle due to regeneration is \",dn ,\" percent\"\n",
    "\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.6:pg-499"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.6\n",
      "\n",
      "\n",
      " Steam quality at turbine exhaust is  0.90269510582\n",
      "\n",
      " Net work per kg of stem is  798.641701509  kJ/kg\n",
      "\n",
      " Cycle efficiency is  33.3978046046  percent\n",
      "\n",
      " Stream rate is  4.50765342356  kg/kW h\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "h1 = 3023.5  # Enthalpy of steam at state 1 in kJ/kg\n",
    "s1 = 6.7664 # Enthalpy of steam at state 1 in kJ/kgK\n",
    "s2 = s1 # Isentropic process\n",
    "s3 = s1 #Isentropic process\n",
    "s4 = s1 #Isentropic process\n",
    "t_sat_20 = 212 # Saturation temperature at 20 bar in degree Celsius\n",
    "t_sat_1 = 46 # Saturation temperature at 1 bar in degree Celsius\n",
    "dt = t_sat_20-t_sat_1 # Change in temperature\n",
    "n =3 # number of heaters\n",
    "t = dt/n # temperature rise per heater\n",
    "t1 = t_sat_20-t # Operational temperature of first heater\n",
    "t2 = t1-t# Operational temperature of second heater\n",
    "# 0.1 bar\n",
    "hf = 191.83 # Enthalpy of fluid in kJ/kg\n",
    "hfg = 2392.8 # Latent heat of vaporization in kJ/kg\n",
    "sf = 0.6493# Entropy of fluid in kJ/kgK\n",
    "sg = 8.1502# Entropy of gas in kJ/kgK\n",
    "# At 100 degree\n",
    "hf100 = 419.04 # Enthalpy of fluid in kJ/kg  \n",
    "hfg100 = 2257.0# Latent heat of vaporization in kJ/kg \n",
    "sf100 = 1.3069 # Entropy of fluid in kJ/kgK \n",
    "sg100 = 7.3549 # Entropy of gas in kJ/kgK\n",
    "# At 150 degree\n",
    "hf150 = 632.20 # Enthalpy of fluid in kJ/kg  \n",
    "hfg150 = 2114.3# Latent heat of vaporization in kJ/kg  \n",
    "sf150 = 1.8418 # Entropy of fluid in kJ/kgK \n",
    "sg150 = 6.8379# Entropy of gas in kJ/kgK\n",
    "x2 = (s1-sf150)/4.9961 # Steam quality\n",
    "h2 = hf150+(x2*hfg150) # Enthalpy at state 2 in kJ/kg\n",
    "x3 = (s1-sf100)/6.0480 # Steam quality\n",
    "h3 = hf100+(x3*hfg100) # Enthalpy at state 3 in kJ/kg \n",
    "x4 = (s1-sf)/7.5010 # Steam quality\n",
    "h4 = hf+(x4*hfg)#Enthalpy at state 4 in kJ/kg\n",
    "h5 = hf # Enthalpy at state 5 in kJ/kg\n",
    "h6 = h5 #Enthalpy at state 6 in kJ/kg\n",
    "h7 = hf100 # Enthalpy at state 7 in kJ/kg\n",
    "h8 = h7 # Enthalpy at state 8 in kJ/kg\n",
    "h9 = 632.2  # Enthalpy at state 9 in kJ/kg\n",
    "h10 = h9 # Enthalpy at state 10 in kJ/kg\n",
    "m1 = (h9-h7)/(h2-h7) # regenerative mass \n",
    "m2 = ((1-m1)*(h7-h6))/(h3-h6) # regenerative mass\n",
    "Wt = 1*(h1-h2)+(1-m1)*(h2-h3)+(1-m1-m2)*(h3-h4) # Turbine work\n",
    "Q1 = h1-h9 # Heat addition\n",
    "Wp = 0  # Pump work is neglected\n",
    "n_cycle = 100*(Wt-Wp)/Q1 # Cycle efficiency\n",
    "sr = 3600/(Wt-Wp)  # Steam rate\n",
    "\n",
    "print \"\\n Example 12.6\\n\"\n",
    "print \"\\n Steam quality at turbine exhaust is \",x3\n",
    "print \"\\n Net work per kg of stem is \",Wt ,\" kJ/kg\"\n",
    "print \"\\n Cycle efficiency is \",n_cycle ,\" percent\"\n",
    "print \"\\n Stream rate is \",sr ,\" kg/kW h\"\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.7:pg-501"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.7\n",
      "\n",
      "\n",
      " The second law efficiency is  47.3045857486  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "Ti = 2000.0 # Hot gas inlet temperature in K\n",
    "Te = 450.0 # Hot gas exhaust temperature in K\n",
    "T0 = 300.0 # Ambient temperature in K\n",
    "Q1_dot = 100.0 # Heating rate provided by steam in kW\n",
    "cpg = 1.1 # Heat capacity of gas in kJ/kg\n",
    "wg = Q1_dot/(cpg*(Ti-Te)) # mass flow rate of hot gas\n",
    "af1 = wg*cpg*T0*((Ti/T0)-1-math.log(Ti/T0)) # Availability at inlet\n",
    "af2 = wg*cpg*T0*((Te/T0)-1-math.log(Te/T0)) # Availability at exit\n",
    "afi = af1-af2 # Change in availability\n",
    "h1 = 2801.0 # Enthalpy at state 1 in kJ/kg\n",
    "h3 = 169.0 #Enthalpy at state 3 in kJ/kg\n",
    "h4 = 172.8 #Enthalpy at state 4 in kJ/kg\n",
    "h2 = 1890.2 # Enthalpy at state 2 in kJ/kg\n",
    "s1 = 6.068 # Entropy at state 1 in kJ/kgK\n",
    "s2 = s1 # Isentropic process\n",
    "s3 = 0.576 # Entropy at state 3 in kJ/kgK\n",
    "s4 = s3 # Isentropic process\n",
    "Wt = h1-h2 # Turbine work\n",
    "Wp = h4-h3 # Pump work\n",
    "Q1 = h1-h4 # Heat addition\n",
    "Q2 = h2-h3# Heat rejection\n",
    "Wnet = Wt-Wp # Net work\n",
    "ws = Q1_dot/2628 # steam mass flow rate\n",
    "afu = 38*(h1-h4-T0*(s1-s3)) # availability loss\n",
    "I_dot = afi-afu # Rate of exergy destruction\n",
    "Wnet_dot = ws*Wnet# Mechanical power rate\n",
    "afc = ws*(h2-h3-T0*(s2-s3)) # Exergy flow rate of of wet steam\n",
    "n2 = 100*Wnet_dot/af1 # second law efficiency\n",
    "\n",
    "print \"\\n Example 12.7\\n\"\n",
    "print \"\\n The second law efficiency is \",n2 ,\" percent\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.8:pg-503"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.8\n",
      "\n",
      "\n",
      " Part (a)\n",
      "\n",
      " The first law efficiency n1 is  36.4738076622\n",
      "\n",
      " The second law efficiency n2 is  42.9755948516\n",
      "\n",
      " The work ratio is  0.991498405951\n",
      "\n",
      " Part (b)\n",
      "\n",
      " The first law efficiency n1 is  39.3996247655\n",
      "\n",
      " The second law efficiency n2 is  66.4411884747\n",
      "\n",
      " The work ration is  0.993690851735\n",
      "\n",
      " Part (c)\n",
      "\n",
      " The first law efficiency n1 is  40.5460576678\n",
      "\n",
      " The second law efficiency n2 is  68.3744648698\n",
      "\n",
      " The work ration is  0.994990607389\n",
      "\n",
      " Part (d)\n",
      "\n",
      " The first law efficiency n1 is  43.8732394366\n",
      "\n",
      " The second law efficiency n2 is  32.4128919233\n",
      "\n",
      " The work ration is  0.991498405951\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Part (a)\n",
    "h1 = 2758.0 # Enthalpy at state 1 in kJ/kg\n",
    "h2 = 1817.0 # Enthalpy at state 2 in kJ/kg\n",
    "h3 = 192.0 # Enthalpy at state 3 in kJ/kg\n",
    "h4 = 200.0# Enthalpy at state 4 in kJ/kg\n",
    "Wt = h1-h2 # turbine work\n",
    "Wp = h4-h3 # Pump work\n",
    "Q1 = h1-h4 # Heat addition\n",
    "Wnet = Wt-Wp # Net work doen\n",
    "n1 = Wnet/Q1 # First law efficiency\n",
    "WR = Wnet/Wt # Work ratio\n",
    "Q1_ = 100.0 # Heat addition rate in MW\n",
    "PO = n1*Q1_ # power output\n",
    "cpg = 1000 # Specific heat capacity in J/kg\n",
    "wg = (Q1_/(833-450)) # mass flow rate of gas\n",
    "EIR = wg*cpg*((833-300)-300*(math.log(833/300)))/1000 # Exergy input\n",
    "n2 = PO/EIR # Second law efficiency\n",
    "\n",
    "print \"\\n Example 12.8\\n\"\n",
    "print \"\\n Part (a)\"\n",
    "print \"\\n The first law efficiency n1 is \",n1*100\n",
    "print \"\\n The second law efficiency n2 is \",n2*100\n",
    "print \"\\n The work ratio is \",WR\n",
    "# Part (b)\n",
    "h1b = 3398.0 # Enthalpy at state 1 in kJ/kg\n",
    "h2b = 2130.0 # Enthalpy at state 2 in kJ/kg\n",
    "h3b = 192.0 # Enthalpy at state 3 in kJ/kg\n",
    "h4b = 200.0# Enthalpy at state 4 in kJ/kg\n",
    "Wtb = 1268.0 # turbine work in kJ/kg\n",
    "Wpb = 8.0  # Pump work in kJ/kg\n",
    "Q1b = 3198.0# Heat addition rate in kW\n",
    "n1b = (Wtb-Wpb)/Q1b #first law efficiency\n",
    "WRb = (Wtb-Wpb)/Wtb # WOrk ratio\n",
    "EIRb = 59.3 # Exergy input rate in MW\n",
    "Wnetb = Q1_*n1b # net work done\n",
    "\n",
    "n2b = Wnetb/EIRb # Second law efficiency\n",
    "print \"\\n Part (b)\" \n",
    "print \"\\n The first law efficiency n1 is \",n1b*100\n",
    "print \"\\n The second law efficiency n2 is \",n2b*100\n",
    "print \"\\n The work ration is \",WRb\n",
    "\n",
    "# Part (c)\n",
    "h1c = 3398.0 # Enthalpy at state 1 in kJ/kg\n",
    "h2c = 2761.0 # Enthalpy at state 2 in kJ/kg\n",
    "h3c = 3482.0# Enthalpy at state 3 in kJ/kg\n",
    "h4c = 2522.0 # Enthalpy at state 4 in kJ/kg\n",
    "h5c = 192.0 # Enthalpy at state 5 in kJ/kg\n",
    "h6c = 200.0# Enthalpy at state 6 in kJ/kg\n",
    "Wt1 = 637.0 # Turbine work in kJ/kg\n",
    "Wt2 = 960.0 # Turbine work in kJ/kg\n",
    "Wtc = Wt1+Wt2  # Net turbine work in kJ/kg\n",
    "Wp = 8.0 # Pump work in kJ/kg \n",
    "Wnetc = Wtc-Wp # net work done \n",
    "Q1c = 3198+721 # Heat addition\n",
    "n1c = Wnetc/Q1c# First law efficiency\n",
    "WRc = Wnetc/Wtc# Work ratio\n",
    "POc = Q1_*n1c# Power output\n",
    "EIRc = 59.3# Exergy input in MW\n",
    "n2c = POc/EIRc # Second law efficiency\n",
    "print \"\\n Part (c)\"\n",
    "print \"\\n The first law efficiency n1 is \",n1c*100\n",
    "print \"\\n The second law efficiency n2 is \",n2c*100\n",
    "print \"\\n The work ration is \",WRc\n",
    "\n",
    "# Part (d)\n",
    "T3 = 45.8 # saturation temperature at 0.1 bar in degree celsius \n",
    "T1 = 295.0 # saturation temperature at 80 bar in degree celsius \n",
    "n1d = 1.0-((T3+273)/(T1+273)) # First law efficiency\n",
    "Q1d = 2758-1316 # Heat addition\n",
    "Wnet = Q1d*n1d # Net work output\n",
    "Wpd = 8.0 # Pump work in kJ/kg\n",
    "Wtd = 641.0# Turbine work in kJ/kg\n",
    "WRd = (Wt-Wp)/Wt # Work ratio\n",
    "POd = Q1_*0.439# Power output\n",
    "EIRd = (Q1_/(833-593))*cpg*((833-300)-300*(math.log(833/300)))/1000 #Exergy Input rate in MW\n",
    "n2d = POd/EIRd # Second law efficiency\n",
    "print \"\\n Part (d)\"\n",
    "print \"\\n The first law efficiency n1 is \",n1d*100\n",
    "print \"\\n The second law efficiency n2 is \",n2d*100\n",
    "print \"\\n The work ration is \",WRd\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.9:pg-505"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.9\n",
      "\n",
      "\n",
      " Temperature of the steam is  360.0  degree celcius\n",
      "\n",
      " Pressure of the steam is  22.5  bar\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "hfg = 2202.6 # Latent heat of fusion in kJ/kg\n",
    "Qh = 5.83 # Heat addition in MJ/s\n",
    "ws = Qh/hfg # steam flow rate\n",
    "eg = 0.9 # efficiency of generator\n",
    "P = 1000.0 # Power generation rate in kW\n",
    "Wnet = 1000.0/eg # Net output\n",
    "nbrake = 0.8 # brake thermal efficiency\n",
    "h1_2s = Wnet/(ws*nbrake) # Ideal heat addition\n",
    "n_internal = 0.85 # internal efficiency\n",
    "h12 = n_internal*h1_2s # Actual heat addition\n",
    "hg = 2706.3 # Enthalpy of gas in kJ/kg\n",
    "h2 = hg #Isenthalpic process \n",
    "h1 = h12+h2 # Total enthalpy \n",
    "h2s = h1-h1_2s # Enthalpy change\n",
    "hf = 503.71 # Enthalpy of fluid in kJ/kg \n",
    "x2s = (h2s-hf)/hfg # Quality of steam\n",
    "sf = 1.5276  # entropy of fluid in kJ/kgK\n",
    "sfg = 5.6020 # Entropy change due to vaporization in kJ/kgK\n",
    "s2s = sf+(x2s*sfg) # Entropy at state 2s\n",
    "s1 = s2s # Isentropic process\n",
    "P1 = 22.5 # Turbine inlet pressure in bar from Mollier chart\n",
    "t1 = 360.0 # Temperature of the steam in degree Celsius from Mollier chart\n",
    "\n",
    "print \"\\n Example 12.9\\n\"\n",
    "print \"\\n Temperature of the steam is \",t1 ,\" degree celcius\"\n",
    "print \"\\n Pressure of the steam is \",P1 ,\" bar\"\n",
    "#The answers vary due to round off error\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.10:pg-506"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.10\n",
      "\n",
      "\n",
      " Fuel burning rate is  18.1592477786  tonnes/day\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "h1 = 3037.3 # Enthalpy at state 1 in kJ/kg\n",
    "x = 0.96 # Steam quality\n",
    "h2 = 561+(x*2163.8) # Enthalpy at state 2 \n",
    "s2 = 1.6718+(x*5.3201)# Entropy at state 2 \n",
    "s3s = s2 # Isentropic process\n",
    "x3s = (s3s-0.6493)/7.5009 # Quality at state 3s \n",
    "h3s = 191.83+(x3s*2392.8) # Enthalpy at state 3s \n",
    "h23 = 0.8*(h2-h3s) # Enthalpy change in process 23\n",
    "h3 = h2-h23 # Enthalpy at state 3\n",
    "h5 = 561.47  # Enthalpy at state 5\n",
    "h4 = 191.83# Enthalpy at state 4\n",
    "Qh = 3500 # Heat addition in kJ/s\n",
    "w = Qh/(h2-h5) # mass flow rate\n",
    "Wt = 1500 # Turbine work\n",
    "ws = (Wt+w*(h2-h3))/(h1-h3) # Steam flow rate \n",
    "ws_ = 3600*ws  # Steam flow rate  in kg/h\n",
    "h6 = ((ws-w)*h4+w*h5)/ws  #Enthalpy at state 6\n",
    "h7 = h6# Enthalpy at state 7\n",
    "n_boiler = 0.85 # Boiler efficiency\n",
    "CV = 44000 # Calorific value of fuel in kJ/kg\n",
    "wf = (1.1*ws_*(h1-h7))/(n_boiler*CV) # Fuel consumption rate\n",
    "\n",
    "print \"\\n Example 12.10\\n\"\n",
    "print \"\\n Fuel burning rate is \",wf*24/1000 ,\" tonnes/day\"\n",
    "#The answers vary due to round off error\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.11:pg-508"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.11\n",
      "\n",
      "\n",
      " The minimum pressure at which bleeding is neccessary is  10  bar\n",
      "\n",
      " Steam flow at turbine inlet is  0.206237542099  kg/s\n",
      "\n",
      " Cycle efficiency is  35.9203808526  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "h1 = 3285.0  # Enthalpy at state 1 in kJ/kg\n",
    "h2s = 3010.0 # Enthalpy at state 2s in kJ/kg\n",
    "h3 = 3280.0 # # Enthalpy at state 3 in kJ/kg\n",
    "h4s = 3030.0 # # Enthalpy at state 4s in kJ/kg\n",
    "# Saturation pressure at temperature 180 degree centigrade\n",
    "psat = 10 # In bar\n",
    "h4 = h3-0.83*(h3-h4s) # # Enthalpy at state 4 \n",
    "h5s = 2225.0 # # Enthalpy at state 5s in kJ/kg\n",
    "h5 = h4-0.83*(h4-h5s) # # Enthalpy at state 5\n",
    "h6 = 162.7 # Enthalpy at state 6 in kJ/kg\n",
    "h7 = h6 # # Enthalpy at state 7 \n",
    "h8 = 762.81# Enthalpy at state 8 in kJ/kg\n",
    "h2 = h1-0.785*(h1-h2s) #Enthalpy at state 2 \n",
    "m = (h8-h7)/(h4-h7) # regenerative mass flow\n",
    "n_cycle = ((h1-h2)+(h3-h4)+(1-m)*(h4-h5))/((h1-h8)+(h3-h2)) # Cycle efficiency\n",
    "\n",
    "print \"\\n Example 12.11\\n\"\n",
    "print \"\\n The minimum pressure at which bleeding is neccessary is \",psat ,\" bar\"\n",
    "print \"\\n Steam flow at turbine inlet is \",m ,\" kg/s\"\n",
    "print \"\\n Cycle efficiency is \",n_cycle*100 ,\" percent\"\n",
    "#The answers vary due to round off error\n",
    "# Part A and Part B are theoretical problems\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex12.12:pg-510"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Example 12.12 \n",
      "\n",
      "\n",
      " Overall efficiency of the cycle is  52.7981817715  percent\n",
      "\n",
      " Flow through the mercury turbine is math.exp kg/h 593428.190307\n",
      "\n",
      " Useful work done in binary vapor cycle is  28.3728027889  MW\n",
      "\n",
      " Overall efficiency is  46.1693685319  percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# From table \n",
    "h1 = 2792.2 # Enthalpy at state 1 in kJ/kg \n",
    "h4 = 122.96# Enthalpy at state 4 in kJ/kg \n",
    "hb = 254.88 # Enthalpy at state b in kJ/kg \n",
    "hc = 29.98# Enthalpy at state c in kJ/kg \n",
    "ha = 355.98 # Enthalpy at state a in kJ/kg \n",
    "hd = hc # Isenthalpic process\n",
    "h2 = 1949.27 # # Enthalpy at state 2 in kJ/kg \n",
    "#\n",
    "m = (h1-h4)/(hb-hc) # Amount of mercury circulating\n",
    "Q1t = m*(ha-hd) # Heat addition\n",
    "W1t = m*(ha-hb) + (h1-h2) # Turbine work\n",
    "n = W1t/Q1t # first law efficiency\n",
    "\n",
    "print \"\\n Example 12.12 \\n\"\n",
    "print \"\\n Overall efficiency of the cycle is \",n*100 ,\" percent\"\n",
    "#The answers vary due to round off error\n",
    "\n",
    "S = 50000 # Stem flow rate through turbine in kg/h\n",
    "wm = S*m # mercury flow rate\n",
    "print \"\\n Flow through the mercury turbine is math.exp kg/h\",wm\n",
    "\n",
    "Wt = W1t*S/3600 # Turbine work\n",
    "print \"\\n Useful work done in binary vapor cycle is \",Wt/1e3 ,\" MW\"\n",
    "nm = 0.85 # Internal efficiency of mercury turbine\n",
    "ns = 0.87 # Internal efficiency of steam turbine\n",
    "WTm = nm*(ha-hb) # turbine work of mercury based cycle\n",
    "hb_ = ha-WTm # Enthalpy at state b in kJ/kg\n",
    "m_ = (h1-h4)/(hb_-hc) # mass flow rate of mercury\n",
    "h1_ = 3037.3 # Enthalpy at state 1 in kJ/kg\n",
    "Q1t = m_*(ha-hd)+(h1_-h1) # Heat addition\n",
    "x2_ = (6.9160-0.4226)/(8.47-0.4226) # steam quality\n",
    "h2_ = 121+(0.806*2432.9) # Enthalpy at state 2 in kJ/kg \n",
    "WTst = ns*(h1_-h2_) # Turbine work\n",
    "WTt = m_*(ha-hb_)+WTst  # Total turbine work\n",
    "N = WTt/Q1t #Overall efficiency \n",
    "print \"\\n Overall efficiency is \",N*100 ,\" percent\"\n",
    "# The answers vary due to round off error\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}