1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7: SELF AND MUTUAL INDUCTANCES"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1,Page number: 184\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the emf induced in a coil.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"L=4 #Self inductance of the coil(in Henry) \n",
"di=4-10 #Change in current(in Amperes)\n",
"dt=0.1 #Time interval(in seconds)\n",
"\n",
"\n",
"#Calculations:\n",
"e=-L*(di/dt)\n",
"\n",
"\n",
"#Result:\n",
"print \"The emf induced in the coil is %.2f V.\" %(e)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The emf induced in the coil is 240.00 V.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2,Page number: 184"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the inductance of a coil.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"N=150 #Number of turns in the coil \n",
"flux=0.01 #Flux linked with the coil(in Webers)\n",
"I=10 #Current in the coil(in Amperes) \n",
"\n",
"\n",
"#Calculations:\n",
"L=(N*flux)/I\n",
"di=-10-(10)\n",
"dt=0.01\n",
"e=-L*(di/dt)\n",
"\n",
"\n",
"#Result:\n",
"print \"The inductance of the coil is %.2f H.\" %(L)\n",
"print \"The induced emf is %.2f V.\" %(e)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The inductance of the coil is 0.15 H.\n",
"The induced emf is 300.00 V.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3,Page number: 185"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the inductance of the coil and the emf induced.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"N=100 #Number of turns in the coil\n",
"\n",
"\n",
"#Calculations:\n",
"dflux=-0.4-0.4\n",
"di=-10-10\n",
"L=N*(dflux/di)\n",
"dt=0.01\n",
"e=-(L*(di/dt))/1000\n",
"\n",
"\n",
"#Result:\n",
"print \"The inductance of the coil is %.2f mH.\" %(L)\n",
"print \"The induced emf is %.2f V.\" %(e)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The inductance of the coil is 4.00 mH.\n",
"The induced emf is 8.00 V.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4,Page number: 185"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the energy stored in an air-cored solenoid.\"\"\"\n",
"\n",
"from math import pi,pow\n",
"\n",
"\"\"\" All quantities expresssed in SI System.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"l=0.30 #Length of the solenoid(in metres) \n",
"d=0.015 #Internal diameter of the solenoid(in metres) \n",
"r=0.0075 #Internal radius of the solenoid(in metres)\n",
"N=900 #Number of turns in the coil \n",
"\n",
"\n",
"#Calculations:\n",
"A=pi*pow(r,2)\n",
"L=(pow(N,2)*4*pi*A)/(0.30*10000000)\n",
"I=5\n",
"W=0.5*L*pow(I,2)\n",
"\n",
"\n",
"#Result:\n",
"print \"The inductance of the air-cored solenoid is %.2f mH.\" %(L*1000)\n",
"print \"The amount of energy stored in the air-cored solenoid is %.2f mJ.\" %(W*1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The inductance of the air-cored solenoid is 0.60 mH.\n",
"The amount of energy stored in the air-cored solenoid is 7.49 mJ.\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5,Page number: 185"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the relative permeability of iron and the inductance of a coil.\"\"\"\n",
"\n",
"from math import pow,pi\n",
"\n",
"#Variable Declaration:\n",
"r=0.01 #Radius of circular ring(in metres)\n",
"A=pi*pow(r,2) #Area of circular ring(in square metres) \n",
"N=3000 #Number of turns in the coil \n",
"I=0.5 #Current in the coil(in Amperes)\n",
"l=20.0/100 #Length of the iron rod(in metres) \n",
"B=1.2 #Magnitude of magnetic field(in Tesla)\n",
"\n",
"\n",
"#Calculations:\n",
"H=(N*I)/l\n",
"per=B/H\n",
"rel_per=(per*10000000)/(4*pi)\n",
"L=(N*B*A)/I\n",
"dflux=(0.1-1)*A*B\n",
"dt=0.01\n",
"e=-N*(dflux/dt)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The permeability of iron is %e Tm/A.\" %(per)\n",
"print \"(b)The relative permeability of iron is %d.\" %(rel_per)\n",
"print \"(c)The inductance of the coil is %.2f H.\" %(L)\n",
"print \"(d)The voltage in the coil is %.2f V.\" %(e)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The permeability of iron is 1.600000e-04 Tm/A.\n",
"(b)The relative permeability of iron is 127.\n",
"(c)The inductance of the coil is 2.26 H.\n",
"(d)The voltage in the coil is 101.79 V.\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6,Page number: 186"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the potential difference across the terminals of a coil.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"R=3 #Resistance of the coil(in Ohms)\n",
"i=1 #Current in the coil(in Amperes)\n",
"di=10000 #Change in current(in Amperes) \n",
"dt=1 #Time interval(in seconds)\n",
"L=0.1/1000 #Self inductance of the coil(in Henry)\n",
"\n",
"\n",
"#Calculations:\n",
"V=(i*R)+(L*(di/dt))\n",
"\n",
"\n",
"#Result:\n",
"print \"The potential difference that exists across the terminals of the coil is %.2f V.\" %(V) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The potential difference that exists across the terminals of the coil is 4.00 V.\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7,Page number: 188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance and emf induced in a search coil.\"\"\"\n",
"\n",
"from math import pi,pow\n",
"\n",
"#Variable Declaration:\n",
"N1=2000 #Number of turns in the solenoid \n",
"N2=500 #Number of turns in the search coil\n",
"l=0.70 #Length of the solenoid(in metres) \n",
"k=1 #Coefficient of coupling\n",
"A=30.0/10000 #Mean area of the search coil(in square metres)\n",
"\n",
"\n",
"#Calculations:\n",
"per=(4*pi)/10000000.0\n",
"M=(k*N1*N2*per*A)/l\n",
"di1=260.0\n",
"dt=1\n",
"e=M*(di1/dt)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The mutual inductance is %.4f mH.\" %(M*1000)\n",
"print \"(b)The emf induced in the search coil is %.2f V.\" %(e)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The mutual inductance is 5.3856 mH.\n",
"(b)The emf induced in the search coil is 1.40 V.\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8,Page number: 189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance and the coefficient of coupling between two coils.\"\"\"\n",
"\n",
"from math import pow,sqrt\n",
"\n",
"#Variable Declaration:\n",
"N1=600.0 #Number of turns in the first coil\n",
"N2=1700.0 #Number of turns in the second coil \n",
"flux2=0.8/1000 #Magnetic flux produced in the second coil(in Webers) \n",
"I2=6 #Current in the second coil(in Amperes)\n",
"\n",
"\n",
"#Calculations:\n",
"L2=(N2*flux2)/I2\n",
"L1=L2*pow((N1/N2),2)\n",
"flux21=0.5/1000\n",
"k=flux21/flux2\n",
"M=k*sqrt(L1*L2)\n",
"\n",
"\n",
"#Result:\n",
"print \"L1=%.4f H.\" %(L1)\n",
"print \"L2=%.4f H.\" %(L2)\n",
"print \"The coefficient of coupling(k)=%.4f.\" %(k) \n",
"print \"M=%.4f H.\" %(M)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"L1=0.0282 H.\n",
"L2=0.2267 H.\n",
"The coefficient of coupling(k)=0.6250.\n",
"M=0.0500 H.\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.9,Page number: 189 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance and the coefficient of coupling between two coils.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"N1=1200.0 #Number of turns in the first coil \n",
"flux1=0.25/1000 #Magnetic flux produced in the first coil(in Webers) \n",
"I1=5 #Current in the first coil(in Amperes)\n",
"N2=800.0 #Number of turns in the second coil\n",
"flux2=0.15/1000 #Magnetic flux produced in the second coil(in Webers)\n",
"I2=5 #Current in the second coil(in Amperes)\n",
"\n",
"\n",
"#Calculations:\n",
"L1=(N1*flux1)/I1\n",
"L2=(N2*flux2)/I2\n",
"k=0.6\n",
"flux12=k*flux1\n",
"M=(N2*flux12)/I1\n",
"k_new=M/sqrt(L1*L2)\n",
"\n",
"\n",
"#Result:\n",
"print \"The mutual inductance(M) is %.4f H.\" %(M)\n",
"print \"The coefficient of coupling is %.4f.\" %(k_new)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mutual inductance(M) is 0.0240 H.\n",
"The coefficient of coupling is 0.6325.\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10,Page number: 192 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance and the coefficient of coupling between two coils.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"Lsa=1.4/1000 #Net inductance in series-aiding connections(in Henry) \n",
"Lso=0.6/1000 #Net inductance in series-opposing connections(in Henry) \n",
"\n",
"\n",
"#Calculations:\n",
"M=(Lsa-Lso)/4\n",
"\"\"\"Lsa=L1+L2+2M \n",
" L1+L2=1 mH; As the two coils are similar L1=L2=0.5mH \"\"\"\n",
"L1=0.5/1000\n",
"L2=0.5/1000\n",
"k=M/sqrt(L1*L2)\n",
"\n",
"\n",
"#Result:\n",
"print \"The mutual inductance is %.2f mH.\" %(M*1000)\n",
"print \"The coefficient of coupling(k) is %.2f.\" %(k)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mutual inductance is 0.20 mH.\n",
"The coefficient of coupling(k) is 0.40.\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.11,Page number: 193"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance and the self-inductances of two coils. \"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"\"\"\" Equation 1 is L1+L2+(2*M)=1.8;\n",
" \n",
" Equation 2 is L1+L2-(2*M)=0.8. \"\"\"\n",
"\n",
"#Variable Declaration:\n",
"k=0.6 #Coefficient of coupling\n",
"eq1=1.8 #Net inductance when fluxes are in same direction(in Henry)\n",
"eq2=0.8 #Net inductance when fluxes are in opposite direction(in Henry)\n",
"\n",
"\n",
"#Calculations:\n",
"M=(eq1-eq2)/4\n",
"sum=(eq1+eq2)/2\n",
"product=(M*M)/(k*k)\n",
"diff=sqrt((sum*sum)-(4*product))\n",
"L1=(sum+diff)/2\n",
"L2=(sum-diff)/2\n",
"\n",
"\n",
"#Result:\n",
"print \"The mutual inductance of the two coils is %.3f H.\" %(M)\n",
"print \"The self inducatnce of the first coil is %.3f H and the self inductance of the second coil is %.3f H.\" %(L1,L2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mutual inductance of the two coils is 0.250 H.\n",
"The self inducatnce of the first coil is 1.149 H and the self inductance of the second coil is 0.151 H.\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.12,Page number:195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the equivalent inductance of a combination of inductances connected in parallel.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"k=0.433 #Coefficient of coupling \n",
"L1=8 #Self-inductance of the first coil \n",
"L2=6 #Self-inductance of the second coil\n",
"\n",
"\n",
"#Calculations:\n",
"M=k*sqrt(L1*L2)\n",
"Lpa=((L1*L2)-(M*M))/(L1+L2-(2*M))\n",
"Lpo=((L1*L2)-(M*M))/(L1+L2+(2*M))\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The equivalent inductance such that the mutual induction assists the self induction is %.3f H.\" %(Lpa)\n",
"print \"(b)The equivalent inductance such that the mutual induction opposes the self induction is %.3f H.\" %(Lpo) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The equivalent inductance such that the mutual induction assists the self induction is 4.875 H.\n",
"(b)The equivalent inductance such that the mutual induction opposes the self induction is 1.950 H.\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.13,Page number: 196 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the number of turns in an air-cored coil.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"l=2.5e-02 #Length of the coil(in metres)\n",
"A=2e-04 #Average cross-sectional area of the coil(in square-metres)\n",
"L=400e-06 #Self-inductance of the coil(in Henry)\n",
"\n",
"\n",
"#Calculations:\n",
"abs_per=(4*pi)/(1e07)\n",
"N=sqrt((L*l)/(abs_per*A))\n",
"\n",
"\n",
"#Result:\n",
"print \"The number of turns in the air-cored coil is %d.\" %(round(N,0)) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of turns in the air-cored coil is 199.\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.14,Page number: 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance between two coils and their self inductances.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"k=0.75 #Coefficient of coupling between two coils\n",
"I1=3.0 #Current in the first coil(in Amperes)\n",
"N1=250.0 #Number of turns in the first coil\n",
"flux1=4e-03 #Flux produced in the first coil(in Webers)\n",
"V2=70.0 #Voltage induced in the second coil due to first coil(in Volts)\n",
"di1=3.0 #Change in current in the first coil(in Amperes)\n",
"dt=3e-03 #Time interval(in seconds)\n",
"\n",
"\n",
"#Calculations:\n",
"L1=N1*(flux1/I1)\n",
"M=(V2*dt)/di1\n",
"L2=(M*M)/(k*k*L1)\n",
"N2=N1*sqrt(L2/L1)\n",
"\n",
"\n",
"#Result:\n",
"print \"L1=%.4f H.\" %(L1)\n",
"print \"L2=%.4f H.\" %(L2)\n",
"print \"M=%.4f H.\" %(M)\n",
"print \"N2=%d.\" %(round(N2,0))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"L1=0.3333 H.\n",
"L2=0.0261 H.\n",
"M=0.0700 H.\n",
"N2=70.\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.15,Page number: 197"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mean value of self inductance of a coil.\"\"\"\n",
"\n",
"#Variable Declaration:\n",
"N=1000.0 #Number of turns in the coil\n",
"A=20e-04 #Cross-sectional area of the coil(in square-metre)\n",
"I1=4.0 #First current(in Amperes)\n",
"B1=1.0 #Flux density associated with the first current(in Weber per sqyare-metre) \n",
"I2=9.0 #Second current(in Amperes)\n",
"B2=1.4 #Flux density associated with the first current(in Weber per sqyare-metre)\n",
"dt=0.05 #Time interval(in seconds)\n",
"\n",
"\n",
"#Calculations:\n",
"L1=(N*B1*A)/I1\n",
"L2=(N*B2*A)/I2\n",
"L=(L1+L2)/2.0\n",
"di=I2-I1\n",
"e=L*(di/dt)\n",
"\n",
"\n",
"#Result:\n",
"print \"The mean value of inductance between the given current limits is %.4f H.\" %(L)\n",
"print \"The emf induced in the coil is %.2f V.\" %(e)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mean value of inductance between the given current limits is 0.4056 H.\n",
"The emf induced in the coil is 40.56 V.\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.16,Page number: 197"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the mutual inductance between two coils and their respective self-inductances.\"\"\"\n",
"\n",
"from math import pi,sqrt\n",
"\n",
"#Variable Declaration:\n",
"N1=100.0 #Number of turns in the first coil\n",
"N2=150.0 #Number of turns in the second coil\n",
"A=125e-04 #Area of cross-section(in square-metres)\n",
"l=200e-02 #Mean length(in metres)\n",
"rel_per=2000.0 #Relative permeability of iron\n",
"k=1 #Coefficient of coupling\n",
"\n",
"\"\"\" NOTE: As the two coils are wound side by side,there is tight coupling. Therefore, k=1. \"\"\"\n",
"\n",
"#Calculations:\n",
"abs_per=(4*pi)/(1e07)\n",
"L1=(N1*N1*rel_per*abs_per*A)/l\n",
"L2=(N2*N2*rel_per*abs_per*A)/l\n",
"M=k*sqrt(L1*L2)\n",
"di1=5.0\n",
"dt=0.02\n",
"e2=M*(di1/dt)\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The self inductances of the tow coils are: L1=%.3f mH and L2=%.3f mH.\" %((L1*1000.0),(L2*1000.0))\n",
"print \"(b)The mutual inductance between the two coils is %.3f mH.\" %(M*1000.0)\n",
"print \"(c)The emf induced in the second coil is %.2f V.\" %(e2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The self inductances of the tow coils are: L1=157.080 mH and L2=353.429 mH.\n",
"(b)The mutual inductance between the two coils is 235.619 mH.\n",
"(c)The emf induced in the second coil is 58.90 V.\n"
]
}
],
"prompt_number": 44
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.17,Page number: 198"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the coeffcient of coupling and the self-inductance of two coils.\"\"\" \n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"Lsa=4.0 #Equivalent inductance of series aiding(in Henry)\n",
"Lso=0.8 #Equivalent inductance of series opposing(in Henry)\n",
"\n",
"\"\"\" NOTE: Lsa=L+L+(2*M);\n",
" Lso=L+L-(2*M); \"\"\"\n",
"\n",
"\n",
"#Calculations:\n",
"L=(Lsa+Lso)/4.0\n",
"M=(Lsa-Lso)/4.0\n",
"k=M/sqrt(L*L)\n",
"\n",
"\n",
"#Result:\n",
"print \"The self inductance of each coil is %.2f H.\" %(L)\n",
"print \"The coefficient of coupling is %.3f.\" %(round(k,3))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The self inductance of each coil is 1.20 H.\n",
"The coefficient of coupling is 0.667.\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.18,Page number: 198"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the equivalent inductance of different combinations of two coils.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"L1=200e-03 #Self-inductance of the first coil(in Henry) \n",
"L2=800e-03 #Self-inductance of the second coil(in Henry)\n",
"k=0.5 #Coefficient of coupling between two coils\n",
"\n",
"\n",
"#Calculations:\n",
"M=k*sqrt(L1*L2)\n",
"Lsa=L1+L2+(2*M)\n",
"Lso=L1+L2-(2*M)\n",
"Lpa=((L1*L2)-(M*M))/Lso\n",
"Lpo=((L1*L2)-(M*M))/Lsa\n",
"\n",
"\n",
"#Result:\n",
"print \"(a)The equivalent inductance of series aiding is %.3f mH.\" %(Lsa*1000.0)\n",
"print \"(b)The equivalent inductance of series opposing is %.3f mH.\" %(Lso*1000.0)\n",
"print \"(c)The equivalent inductance of parallel aiding is %.3f mH.\" %(Lpa*1000.0)\n",
"print \"(d)The equivalent inductance of parallel opposing is %.3f mH.\" %(Lpo*1000.0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The equivalent inductance of series aiding is 1400.000 mH.\n",
"(b)The equivalent inductance of series opposing is 600.000 mH.\n",
"(c)The equivalent inductance of parallel aiding is 200.000 mH.\n",
"(d)The equivalent inductance of parallel opposing is 85.714 mH.\n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.19,Page number: 198"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Question:\n",
"\"\"\"Finding the exciting current for a horse-shoe magnet.\"\"\"\n",
"\n",
"from math import sqrt\n",
"\n",
"#Variable Declaration:\n",
"l=45e-02 #Length of the iron path(in metres)\n",
"A=6e-04 #Cross-sectional area of the wrought iron bar(in square-metres)\n",
"N=500.0 #Number of turns in exciting coil\n",
"load=60.0 #Load to be lifted(in kilograms)\n",
"rel_per=800.0 #Relative permeability of iron\n",
"g=9.8 #Accelaration due to gravity(in metre per square-seconds) \n",
"\n",
"\n",
"#Calculations:\n",
"abs_per=(4*pi)/(1e07)\n",
"F=(load/2.0)*g\n",
"B=sqrt((2*abs_per*F)/A)\n",
"H=B/(abs_per*rel_per)\n",
"At=H*l\n",
"I=At/(N*2)\n",
"\n",
"\n",
"#Result:\n",
"print \"The exciting current needed for the magnet is %.5f A.\" %(I)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The exciting current needed for the magnet is 0.49674 A.\n"
]
}
],
"prompt_number": 31
}
],
"metadata": {}
}
]
}
|