summaryrefslogtreecommitdiff
path: root/BASIC_ELECTRICAL_ENGINEERING_/Chapter17.ipynb
blob: e240ccf524a0e72a6961f5a18f9ec83be413e0db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 17: FRACTIONAL HORSE POWER MOTORS"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.1,Page number: 570\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the slip and efficiency of induction motor.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "f=50                  #Frequency rating of the induction motor(in Hertz) \n",
      "P=4                   #Number of poles in the induction motor  \n",
      "N=1410                #Speed of the motor(in rpm)\n",
      "Po=375                #Output Power(in Watts)\n",
      "V=230                 #Voltage rating of the induction motor(in Volts)    \n",
      "I=2.9                 #Input current(in Amperes)\n",
      "pf=0.71               #Power factor(lagging) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Ns=(120.0*f)/P\n",
      "slip=(Ns-N)/Ns\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"Slip is %.2f percent.\" %(slip*100)\n",
      "Pin=V*I*pf\n",
      "efficiency=Po/Pin\n",
      "print \"The efficiency is %.2f percent.\" %(efficiency*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Slip is 6.00 percent.\n",
        "The efficiency is 79.19 percent.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.2,Page number: 570\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\n",
      "\"\"\"Finding the currents and the power factor in the induction motor.\"\"\"\n",
      "\n",
      "from cmath import phase,rect,polar\n",
      "from math import radians,degrees,cos\n",
      "\n",
      "#Variable Declartion:\n",
      "V=rect(230,0)        #Voltage rating of the split-phase induction motor(in Volts)   \n",
      "Z_M=5+ 12*1j         #Impedance of the main winding(in Ohms)\n",
      "Z_A=12+ 5*1j         #Start-winding impedance(in Ohms)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "mod_Z_M=abs(Z_M)\n",
      "mod_Z_A=abs(Z_A)\n",
      "phi_M=phase(Z_M)\n",
      "phi_A=phase(Z_A)\n",
      "I_M=V/Z_M\n",
      "mod_I_M=abs(I_M)\n",
      "phi_I_M=degrees(phase(I_M))\n",
      "I_A=V/Z_A\n",
      "mod_I_A=abs(I_A)\n",
      "phi_I_A=degrees(phase(I_A))\n",
      "I_L=I_M+I_A\n",
      "mod_I_L=abs(I_L)\n",
      "phi_I_L=degrees(phase(I_L))\n",
      "phi=phi_I_A-phi_I_M\n",
      "pf=cos(radians(phi_I_L))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The current in the main winding is %.2f A at a phase angle of %.2f degrees.\" %(mod_I_M,phi_I_M)\n",
      "print \"(b)The current in the starting winding is %.2f A at a phase angle of %.2f degrees.\" %(mod_I_A,phi_I_A)\n",
      "print \"(c)The line current is %.2f A at a phase angle of %.2f degrees.\" %(mod_I_L,phi_I_L)\n",
      "print \"(d)The phase displacement between the two winding currents is %.2f degrees.\" %(phi)\n",
      "print \"(e)The power factor is %.4f lagging.\" %(pf)                "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The current in the main winding is 17.69 A at a phase angle of -67.38 degrees.\n",
        "(b)The current in the starting winding is 17.69 A at a phase angle of -22.62 degrees.\n",
        "(c)The line current is 32.72 A at a phase angle of -45.00 degrees.\n",
        "(d)The phase displacement between the two winding currents is 44.76 degrees.\n",
        "(e)The power factor is 0.7071 lagging.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.3,Page number: 571\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the capacitance in series with the auxiliary winding to maximize starting torque.\"\"\"\n",
      "\n",
      "from math import radians,degrees,atan,pi,tan\n",
      "\n",
      "#Variable Declaration:\n",
      "X_M=20                #Inductive reactance of the main winding(in Ohm)\n",
      "R_M=2                 #Resistance of the main winding(in Ohm)\n",
      "X_A=5                 #Inductive reactance of the auxiliary winding(in Ohm)\n",
      "R_A=25                #Resistance of the auxiliary winding(in Ohm)\n",
      "f=50                  #Frequency rating of the split-phase induction motor(in Hertz)   \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "angle_M=atan(X_M/R_M)\n",
      "angle_A=degrees(angle_M)-90\n",
      "Xc=X_A-(R_A*tan(radians(angle_A)))\n",
      "\n",
      "\n",
      "#Result:\n",
      "C=1/(2*pi*f*Xc)\n",
      "print \"The value of capacitance connected in series with the auxiliary winding to obtain maximum starting torque is %e F.\" %(C)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of capacitance connected in series with the auxiliary winding to obtain maximum starting torque is 4.244132e-04 F.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.4,Page number: 576\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the resolution and shaft speed of a stepper motor.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "beta=2.5              #Step-angle of a stepper motor(in degrees)\n",
      "step_freq=3600        #Stepping frequency(in pps)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "res=360/beta\n",
      "number_steps=res*25\n",
      "shaft_speed=(beta*step_freq)/360\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The resolution is %d steps per revolution.\" %(res)\n",
      "print \"(b)The number of steps required for the shaft to make 25 revolutions=%d.\" %(number_steps)\n",
      "print \"(c)The shaft speed is %.2f rps.\" %(shaft_speed)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The resolution is 144 steps per revolution.\n",
        "(b)The number of steps required for the shaft to make 25 revolutions=3600.\n",
        "(c)The shaft speed is 25.00 rps.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.5,Page number:577\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the number of stator and rotor poles in a VR motor.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "m=3                   #Number of phases\n",
      "beta=15               #Step angle(in degrees)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Nr=360/(m*beta)\n",
      "Ns1=(Nr*360)/(360-(beta*Nr))\n",
      "Ns2=(Nr*360)/(360+(beta*Nr))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a) The number of rotor poles is %d.\" %(Nr)\n",
      "print \"(b)\"\n",
      "print \"   Case 1: Ns>Nr\"\n",
      "print \"   The number of stator poles is %d. \\n\" %(Ns1)\n",
      "print \"   Case 2: Ns<Nr\"\n",
      "print \"   The number of stator poles is %d.\" %(Ns2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The number of rotor poles is 8.\n",
        "(b)\n",
        "   Case 1: Ns>Nr\n",
        "   The number of stator poles is 12. \n",
        "\n",
        "   Case 2: Ns<Nr\n",
        "   The number of stator poles is 6.\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17.6,Page number: 579\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the number of rotor and stator teeth in VR stepper motor.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "m=4                   #Number of stacks\n",
      "beta=1.8              #Step angle(in degrees)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Nr=360/(m*beta)\n",
      "Ns=Nr\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The number of rotor teeth is %d.\" %(Nr)\n",
      "print \"The number of stator teeth is %d.\" %(Ns)\n",
      "print \"\\nNOTE: In a multistack stepper motor the number of stator teeth is same as that of the rotor teeth.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of rotor teeth is 50.\n",
        "The number of stator teeth is 50.\n",
        "\n",
        "NOTE: In a multistack stepper motor the number of stator teeth is same as that of the rotor teeth.\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}