1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
|
{
"metadata": {
"name": "",
"signature": "sha256:f569d6ccce789a93a823a5990b85a631168b660aee672ad7f9fe51c0887b2c5a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9: Gas Power Cycles "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1, page no. 365"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
" \n",
"from math import log\n",
"#Variable Declaration: \n",
"r = 6 #Compression ratio:\n",
"v = 0.15 #Swept volume(in m**3):\n",
"p1 = 98 #Pressure at the beginning of compression(in kPa):\n",
"T1 = 60+273.15 #Temperature at the beginning of compression(in K):\n",
"Q23 = 150 #Heat supplied(in kJ/kg):\n",
"Cp = 1 #Value of Cp(in kJ/kg):\n",
"Cv = 0.71 #Value of Cv(in kJ/kg):\n",
"\n",
"#Calculations:\n",
"n = round(Cp/Cv,1) #Adiabatic compression factor:\n",
"R = Cp-Cv #Gas constant(in kJ/kg.K):\n",
"v2 = v/(r-1) #Volume at point 2(in m**3):\n",
"v1 = r*v2 #Total cylinder volume(in m**3):\n",
"m = p1*v1/(R*T1) #Mass(in kg):\n",
"p2 = p1*(v1/v2)**n #Pressure at point 2(in kPa):\n",
"T2 = p2*v2*T1/(p1*v1) #Temperature at state 2(in K):\n",
"T3 = Q23/(m*Cv)+T2 #Temperature at state 3(in K):\n",
"v3 = v2\n",
"p3 = p2*v2*T3/(v3*T2) #Pressure at point 3(in kPa):\n",
"v4 = v1\n",
"p4 = p3*(v3/v4)**n #Pressure at point 4(in kPa):\n",
"T4 = p4*v4*T3/(p3*v3) #Temperature at point 4(in K):\n",
"dS = m*Cv*log(T4/T1) #Entropy change(in kJ/K):\n",
"Q41 = m*Cv*(T4-T1) #Heat rejected(in kJ):\n",
"W = Q23-Q41 #Net work done(in kJ):\n",
"e = W/Q23 #Efficiency:\n",
"mep = W/v #Mean effective pressure(in kPa):\n",
"\n",
"#Results:\n",
"print \"Thermal efficiency: \",round(e*100,2),\"%\" \n",
"print \"Mean effective pressure: \",round(mep,2),\"kPa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Thermal efficiency: 51.16 %\n",
"Mean effective pressure: 511.64 kPa\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2, page no. 367"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
" \n",
"#Variable Declaration: \n",
"pa = 138 #Pressure at A(in kPa):\n",
"pb = 1380 #Pressure at B(in kPa):\n",
"nt = 0.5 #Thermal efficiency:\n",
"nm = 0.8 #Mechanical efficiency:\n",
"c = 41800 #Calorific value of fuel(in kJ/kg):\n",
"n = 1.4 #Adiabatic compressive index:\n",
"\n",
"#Calculations:\n",
"r1 = (pb/pa)**(1/n) #Ratio of va to vb:\n",
"r = (7/8*r1-1/8)/(7/8-r1/8) #Compression ratio:\n",
"p = (r-1)/15+1 #Cut off ratio:\n",
"nd = 1-1/(r**(n-1)*n)*(p**n-1)/(p-1) #Air standard efficiency for Diesel cycle:\n",
"no = nd*nt*nm #Overall efficiency:\n",
"fc = 75*60*60/(no*c*10**2) #Fuel consumption,bhp/hr(in kg):\n",
"\n",
"#Results:\n",
"print \"Compression ratio: \",round(r,2)\n",
"print \"Air standard efficiency: \",round(nd*100,2),\"%\"\n",
"print \"Fuel consumption,bhp/hr: \",round(fc,3),\"kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Compression ratio: 19.37\n",
"Air standard efficiency: 63.22 %\n",
"Fuel consumption,bhp/hr: 0.255 kg\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3, page no. 369"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"#Variable Declaration: \n",
"Q = 1700 #Total heat added(in kJ/kg):\n",
"p3 = 5000 #Maximum pressure(in kPa):\n",
"T1 = 100+273.15 #Temperature at the beginning of compression(in K):\n",
"p1 = 103 #Pressureat beginning of compression(in kPa):\n",
"Cp = 1.005 #Value of Cp(in kJ/kg.K):\n",
"Cv = 0.71 #Value of Cv(in kJ/kg.K):\n",
"n = 1.4 #Adiabatic index of compression: #For Otto cycle:\n",
"R = Cp-Cv #Gas constant(in kJ/kg.K):\n",
"m = 1 #Considernig 1 kg of air, volume at 1(in m**3):\n",
"\n",
"#Calculations:\n",
"V1 = m*R*T1/p1\n",
"V2 = 0.18 #By solving, volume at 2(in m**3):\n",
"r = V1/V2 #Compression ratio:\n",
"no = 1-1/(r**(n-1)) #Otto cycle efficiency:\n",
"V21 = 0.122 #By calculating, volume at state 2': #For mixed cycle:\n",
"p21 = 2124.75 #kPa \n",
"T31 = 2082 #K\n",
"T21 = 884.8 #K\n",
"T41 = 2929.5 #K\n",
"V31 = V21\n",
"V41 = V31*T41/T31 #Volume at state 4(in m**3):\n",
"T5 = T41*(V41/V1)**(n-1) #Temperature at state 5(in K):\n",
"Q51 = Cv*(T5-T1) #Heat rejected in the process 5-1(in kJ):\n",
"nm = (Q-Q51)/Q #Efficiency of mixed cycle:\n",
"\n",
"#Results:\n",
"print \"Efficiency of Otto cycle: \",round(no*100,2),\"%\"\n",
"print \"Efficiency of mixed cycle: \",round(nm*100,2),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of Otto cycle: 50.96 %\n",
"Efficiency of mixed cycle: 56.71 %\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4, page no. 372"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
" \n",
"\n",
"#Variable Declaration: \n",
"T3 = 1200 #Maximum temperature(in K):\n",
"T1 = 300 #Minimum temperature(in K):\n",
"n = 1.4 #Adiabatic compression ratio:\n",
"Cp = 1.005 #Value of Cp(in kJ/kg.K):\n",
"\n",
"#Calculation:\n",
"rp = (T3/T1)**(n/(2*(n-1))) #Optimum pressure ratio for maximum work output:\n",
"T2 = T1*rp**((n-1)/n) #Temperature at state 2(in K):\n",
"T4 = T3*rp**((1-n)/n) #Temperature at state 4(in K):\n",
"Q23 = Cp*(T3-T2) #Heat supplied(in kJ/kg):\n",
"Wc = Cp*(T2-T1) #Compressor work(in kJ/kg):\n",
"Wt = Cp*(T3-T4) #Turbine work(in kJ/kg):\n",
"nth = (Wt-Wc)/Q23*100 #Thermal efficiency:\n",
"\n",
"#Results:\n",
"print \"Compressor work: \",round(Wc,2),\"kJ/kg\" \n",
"print \"Turbine work: \",round(Wt,2),\"kJ/kg\"\n",
"print \"Thermal efficiency: \",round(nth,2),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Compressor work: 301.5 kJ/kg\n",
"Turbine work: 603.0 kJ/kg\n",
"Thermal efficiency: 50.0 %\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5, page no. 373"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"#Variable Declaration: \n",
"p1 = 1 #Pressure at state 1(in bar):\n",
"p2 = 6.2 #Pressure at state 2(in bar):\n",
"p3 = 6.2 #Pressure at state 3(in bar):\n",
"p4 = 1 #Pressure at state 4(in bar):\n",
"T1 = 300 #Temperature at state 1(in K):\n",
"r = 0.017 #Fuel by air ratio:\n",
"nc = 0.88 #Compressor effeciency:\n",
"nt = 0.90 #Turbine internal efficiency:\n",
"H = 44186 #Heating value of fuel(in kJ/kg):\n",
"n = 1.4 #Adiabatic index of compression:\n",
"n1 = 1.33\n",
"Cpc = 1.147 #Value of Cp for combination(in kJ/kg.K):\n",
"Cpa = 1.005 #Value of Cp for air(in kJ/kg.K):\n",
"\n",
"#Calculations:\n",
"T2 = T1*(p2/p1)**((n-1)/n) #Temperature at state 2(in K):\n",
"T21 = (T2-T1)/nc+T1 #Actual temperature after compression(in K):\n",
"T3 = (r*H+Cpa*T21)/((1+r)*Cpc) #Temperature at state 3(in K):\n",
"T4 = T3*(p4/p3)**((n1-1)/n1) #Temperature at state 4(in K):\n",
"T41 = T3-nt*(T3-T4) #Actual temperature at turbine inlet considering internal efficiency of turbine(in K):\n",
"Wc = Cpa*(T21-T1) #Compressor work, per kg of air compressed(in kJ/kg):\n",
"Wt = Cpc*(T3-T41) #Turbine work, per kg of air compressed(in K):\n",
"Wnet = Wt-Wc #Net work(in kJ/kg):\n",
"Q = r*H #Heat supplied(in kJ/kg):\n",
"nth = Wnet/Q*100 #Thermal effeciency:\n",
"\n",
"#Results:\n",
"print \"Compressor work: \",round(Wc,2),\"kJ/kg\" \n",
"print \"Turbine work: \",round(Wt,2),\"kJ/kg\"\n",
"print \"Thermal efficiency: \",round(nth,2),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Compressor work: 234.42 kJ/kg\n",
"Turbine work: 414.71 kJ/kg\n",
"Thermal efficiency: 24.0 %\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6, page no. 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
" \n",
"\n",
"#Variable Declaration: \n",
"T5 = 1200 #Maximum temperature(in K):\n",
"T1 = 300 #Minimum temperature(in K):\n",
"T3 = 300\n",
"ni = 0.85 #Isentropic efficiency:\n",
"nt = 0.9 #Turbine efficiency:\n",
"n = 1.4 #Adiabatic index of compression:\n",
"\n",
"#Calculations:\n",
"rpopt = (T1/(T5*ni*nt))**(2*n/(3*(1-n)))#Overall optimum pressure ratio:\n",
"\n",
"#Results:\n",
"print \"Overall optimum pressure ratio: \",round(rpopt,1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall optimum pressure ratio: 13.6\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7, page no. 377"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"from math import log\n",
"\n",
"#Variable Declaration: \n",
"rp = 1.35 #Ratio of pressure:\n",
"m = 50 #Flow rate through compressor(in kg/s):\n",
"no = 0.90 #Overall efficiency:\n",
"p1 = 1 #Initial pressure(in bar):\n",
"T1 = 313 #Initial temperature(in K):\n",
"r = 1.4 #Adiabatic index of compression:\n",
"R = 0.287 #Gas constant(in kJ/kg.K):\n",
"\n",
"#Calculation:\n",
"p9 = p1*rp**8 #Exit pressure(in bar):\n",
"T9 = T1*(p9/p1)**((r-1)/r) #Temperature at exit(in K):\n",
"T9a = (T9-T1)/0.82+T1 #Considerinf efficiency, actual temperature at exit(in K):\n",
"n = log(p9/p1)/(log(p9/p1)-log(T9a/T1)) #Actual index of compression:\n",
"np = ((r-1)/r)*(n/(n-1)) #Polytropic efficiency:\n",
"T2 = T1*rp**((r-1)/r) #Temperature at state 2(in K):\n",
"T2a = T1*(rp)**((n-1)/n) #Actual temperature at state 2(in K):\n",
"ns1 = (T2-T1)/(T2a-T1) #Stage efficiency:\n",
"Wc = (n/(n-1))*m*R*T1*((p9/p1)**((n-1)/n)-1) #Work done by compressor(in kJ/s):\n",
"Wca = Wc/no #Actual compressor work(in kJ/s):\n",
"\n",
"#Results:\n",
"print \"Pressure at exit of comppressor: \",round(p9,2),\"bar\"\n",
"print \"Temperature at the exit of compressor: \",round(T9a,2),\"K\"\n",
"print \"Polytropic efficiency: \",round(np*100,2),\"%\"\n",
"print \"Stage efficiency: \",round(ns1*100,1),\"%\"\n",
"print \"Power required to drive compressor: \",round(Wca,2),\"kJ/s\","
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pressure at exit of comppressor: 11.03 bar\n",
"Temperature at the exit of compressor: 689.24 K\n",
"Polytropic efficiency: 86.9 %\n",
"Stage efficiency: 86.3 %\n",
"Power required to drive compressor: 18245.07 kJ/s\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9, page no. 381"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
" \n",
"\n",
"#Variable Declaration: \n",
"T1 = 27+273 #Temperature at which air is supplied(in K):\n",
"p2 = 8 #Initial pressure(in bar):\n",
"T3 = 1100 #Temperature of air leaving the combustion chamber(in K):\n",
"p4 = 1 #Pressure at state 4(in bar):\n",
"E = 0.8 #Effectiveness of heat exchanger:\n",
"npc = 0.85 #Polytropic efficiency of the compressor:\n",
"npt = 0.90 #Polytropic efficinency of the turbnie:\n",
"r = 1.4 #Adiabatic index of compression:\n",
"Cp = 1.0032 #Value of Cp(in kJ/kg.K):\n",
"\n",
"#Calculations:\n",
"p3 = p2\n",
"p1 = p4\n",
"nc = r*npc/(r*npc-(r-1)) #Compression index:\n",
"nt = r/(r-npt*(r-1)) #Expansion index:\n",
"T2 = T1*(p2/p1)**((nc-1)/nc) #Temperature at state 2:\n",
"T4 = T3*(p4/p3)**((nt-1)/nt) #Temperature at state 4(in K):\n",
"T5 = (T4-T2)*E+T2 #Using heat exchanger effectiveness, temperature at state 5(in K):\n",
"qa = Cp*(T3-T5) #Heat added in combustion chambers(in kJ/kg):\n",
"Wc = Cp*(T2-T1) #Compressor work(in kJ/kg):\n",
"Wt = Cp*(T3-T4) #Turbine work(in kJ/kg):\n",
"ncycle = (Wt-Wc)/qa #Cycle efficiency:\n",
"Wr = (Wt-Wc)/Wt #Work ratio:\n",
"swo = Wt-Wc #Specific work output(in kJ/kg):\n",
"\n",
"#Results:\n",
"print \"Cycle efficiency: \",round(ncycle*100,2),\"%\" \n",
"print \"Work ratio: \",round(Wr,3)\n",
"print \"Specific work output: \",round(swo,2),\"kJ/kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cycle efficiency: 32.79 %\n",
"Work ratio: 0.334\n",
"Specific work output: 152.56 kJ/kg\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10, page no. 382"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"#Variable Declaration: \n",
"p1 = 1 #Initial pressure(in bar):\n",
"T1 = 27+273 #Initial temperature(in K):\n",
"p2 = 5 #Pressure at state 2(in bar):\n",
"nc = 0.85 #Isentropic efficiency:\n",
"T3 = 1000 #Temperature at state 3(in K):\n",
"p3 = p2-0.2 #Pressure at state 3(in bar):\n",
"p4 = p1 #Pressure at state 4(in bar):\n",
"nth = 0.20 #Thermal efficiency of plant:\n",
"r = 1.4 #Adiabatic index of compression:\n",
"Cp = 1.0032 #Value of Cp(in kJ/kg.K):\n",
"\n",
"#Calculations:\n",
"T21 = T1*(p2/p1)**((r-1)/r) #Temperature at state 2'(in K):\n",
"T2 = (T21-T1)/nc+T1 #Temperature at state 2(in K):\n",
"T41 = T3*(p4/p3)**((r-1)/r) #Temperature at state 4'(in K):\n",
"Wc = Cp*(T2-T1) #Compressor work per kg(in kJ/kg): \n",
"qa = Cp*(T3-T2) #Heat added(in kJ/kg):\n",
"T4 = T3-(qa*(-nth)+Wc)/Cp #Temperature at state 4(in K):\n",
"nt = (T3-T4)/(T3-T41) #Isentropic efficiency of turbine:\n",
"\n",
"#Results:\n",
"print \"Turbine isentropic efficiency: \",round(nt*100,3),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Turbine isentropic efficiency: 29.696 %\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11, page no. 383"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"from math import sqrt\n",
"#Variable Declaration: \n",
"p1 = 1 #Pressure at which air is supplied(in bar):\n",
"T1 = 27+273 #Temperature at which air is supplied(in K):\n",
"T5 = 1000 #Maximum temperature in the cycle(in K):\n",
"p6 = 3 #Pressure at state 6(in bar):\n",
"p3 = 3\n",
"T7 = 995 #Temperature at state 7(in K):\n",
"c = 42000 #Calorific value of fuel(in kJ/kg):\n",
"Cp = 1.0032 #Value of Cp(in kJ/kg):\n",
"m = 30 #Air flow in compressor(in kg/s):\n",
"nc = 0.85 #Isentropic efficiency of compression:\n",
"ne = 0.90 #Isebtropic efficiency of expansion:\n",
"r = 1.4 #Adiabatic index of compression:\n",
"\n",
"#Calculations:\n",
"p8 = p1\n",
"p7 = p6\n",
"p4 = 10\n",
"p5 = p4\n",
"rp = round(sqrt(10),2) #Pressure ratio for perfect intercooling:\n",
"T21 = round(T1*rp**((r-1)/r),2) #Temperature at state 2'(in K):\n",
"T3 = T1 #For perfect intercooling:\n",
"T2 = round((T21-T1)/nc+T1,2) #Temperature at state 2(in K):\n",
"T41 = round(T3*(rp)**((r-1)/r),2) #Temperature at state 4'(in K):\n",
"T4 = round((T41-T3)/nc+T3,2) #Temperature at state 4(in K):\n",
"Wc = round(2*Cp*(T2-T1),2) #Total compressor work(in kJ/kg):\n",
"T61 = round(T5*(p6/p5)**((r-1)/r),2) #Temperature at state 6'(in K):\n",
"T6 = round(T5-(T5-T61)*ne,2) #Temperature at state 6(in K):\n",
"T81 = round(T7*(p8/p7)**((r-1)/r),2) #Temperature at state 8'(in K):\n",
"T8 = round(T7-(T7-T81)*ne,2) #Temperature at state 8(in K):\n",
"Wt = Cp*(T5-T6+T7-T8) #Expansion work output per kg air(in kJ/kg):\n",
"qa = Cp*(T5-T4+T7-T6) #Heat added per kg air(in kJ/kg):\n",
"mf = qa/ #Fuel required per kg of air:\n",
"afr = 1/mf #Air-fuel ratio:\n",
"Wnet = (Wt-Wc)*m #Net output(in kW):\n",
"nth = (Wt-Wc)/qa #Thermal efficiency:\n",
"print T21\n",
"#Results:\n",
"print \"Thermal efficiency: \",round(nth*100,2),\"%\" \n",
"print \"Net output: \",round(Wnet,2),\"kW\"\n",
"print \"A/F ratio: \",round(afr,2)\n",
"print \"___There is a calculation mistake in calculating Wt, in the book hence answer varies____\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"416.76\n",
"Thermal efficiency: 27.88 %\n",
"Net output: 6876.61 kW\n",
"A/F ratio: 51.08\n",
"___There is a calculation mistake in calculating Wt, in the book hence answer varies____\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12, page no. 385"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"#Variable Declaration: \n",
"p1 = 1 #Pressure of air at each state(in bar):\n",
"p2 = 4\n",
"p3 = 4\n",
"p4 = 8\n",
"p6 = p4\n",
"p7 = 4\n",
"p8 = 4\n",
"p9 = 1\n",
"T1 = 300 #Temperature at each state(in K):\n",
"T3 = 290\n",
"T6 = 1300\n",
"T8 = 1300\n",
"E = 0.80 #Effectiveness:\n",
"c = 42000 #Heating value of fuel(in kJ/kg):\n",
"r = 1.4 #Adiabatic index of combustion:\n",
"Cp = 1.0032 #Value of Cp(in kJ/kg):\n",
"\n",
"#Calculations:\n",
"T2 = T1*(p2/p1)**((r-1)/r) #Temperature at state 2(in K):\n",
"T4 = T3*(p4/p3)**((r-1)/r) #Temperature at state 4(in K):\n",
"T7 = T6*(p7/p6)**((r-1)/r) #Temperature at state 7(in K):\n",
"T9 = T8*(p9/p8)**((r-1)/r) #Temperature at state 9(in K):\n",
"T5 = (T9-T4)*E+T4 #Temperature at state 5(in K):\n",
"Wc = Cp*(T2-T1+T4-T3) #Compressor work per kg of air(in kJ/kg):\n",
"Wt = Cp*(T6-T7+T8-T9) #Turbine work per kg of air(in kJ/kg):\n",
"qa = Cp*(T6-T5+T8-T7) #Heat added per kg air(in kJ/kg):\n",
"mf = qa/c #Total fuel per kg of air:\n",
"Wnet = Wt-Wc #Net work(in kJ/kg):\n",
"n = Wnet/qa*100 #Cycle thermal efficiency:\n",
"afr1 = Cp*(T6-T5)/c #Fuel per kg air in combustion chamber 1:\n",
"afr2 = Cp*(T8-T7)/c #Fuel per kg air in combustion chamber 2:\n",
"\n",
"#Results:\n",
"print \"A/F ratio in the two combustion chambers: \",round(afr1,4),round(afr2,4)\n",
"print \"Total turbine work\",round(Wt,2),\"kJ/kg\"\n",
"print \"Cycle thermal efficiency\",round(n,2),\"%\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A/F ratio in the two combustion chambers: 0.0126 0.0056\n",
"Total turbine work 660.84 kJ/kg\n",
"Cycle thermal efficiency 58.9 %\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 13, page no. 387"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"from math import log\n",
"\n",
"#Variable Declaration: \n",
"T2 = 700 #Maximum temperature(in K):\n",
"T1 = 300 #Minimum temperature(in K):\n",
"r = 3 #Compression ratio:\n",
"qa = 30 #Total heat added(in kJ/s):\n",
"E = 0.90 #Regenerator efficiency:\n",
"p = 1 #Pressure at the beginning of compression(in bar):\n",
"n = 100 #Number of cycles:\n",
"Cv = 0.72 #Value of Cv:\n",
"R = 29.27 #Gas constant(in kJ/kg.K):\n",
"\n",
"#Calculations:\n",
"W = R*(T2-T1)*log(r) #Work done per kg of air(in kJ/kg):\n",
"q = R*T2*log(r)+(1-E)*Cv*(T2-T1) #Heat added per kg of air(in kJ/kg):\n",
"m = qa/q #Mass of air for 30 kJ/s of heat supplied(in kg/s):\n",
"mc = m/n #Mass of air per cycle(in kg/cycle):\n",
"BP = W*m #Brake output(in kW):\n",
"V = mc*R*T1/(p*10**2) #Stroke volume(in m**3):\n",
"\n",
"#Results:\n",
"print \"Brake output: \",round(BP,2),\"kW\" \n",
"print \"Stroke volume: \",round(V,5),\"m**3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Brake output: 17.12 kW\n",
"Stroke volume: 0.00117 m**3\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15, page no. 392"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"#Variable Declaration: \n",
"T1 = 17+273 #Ambient temperature(in K):\n",
"T3 = 1400 #Temperature at state 3(in K):\n",
"T5 = 420 #Temperature at state 5(in K):\n",
"p1 = 1 #Ambient pressure(in bar):\n",
"p2 = 10 #As pressure ratio is 10, pressure at state 2(in bar):\n",
"p3 = 10\n",
"p4 = 1\n",
"ph = 6000 #Pressure in HSRG(in kPa):\n",
"pc = 15 #Condensor pressure(in kPa):\n",
"O = 37.3 #Combined cycle output(in MW):\n",
"r = 1.4 #Adiabatic index of compression:\n",
"Cp = 1.0032 #Value of Cp(in kJ/kg.K):\n",
"#From steam tables:\n",
"ha = 3177.2 #kJ/kg \n",
"sa = 6.5408 #kJ/kg.K \n",
"sb = sa\n",
"x = 0.7976\n",
"hb = 2118.72 #kJ/kg\n",
"hc = 225.94 #kJ/kg\n",
"vc = 0.001014 #m**3/kg\n",
"\n",
"#Calculations:\n",
"T2 = T1*(p2/p1)**((r-1)/r) #Temperature at state 2(in K):\n",
"T4 = T3*(p4/p3)**((r-1)/r) #Temperature at state 4(in K):\n",
"Wc = Cp*(T2-T1) #Compressor work per kg(in kJ/kg):\n",
"Wt = Cp*(T3-T4) #Turbine work per kg(in kJ/kg):\n",
"qa = Cp*(T3-T2) #Heat added in combustion chamber(in kJ/kg):\n",
"WnetGT = Wt-Wc #Net gas turbine output(in kJ/kg air):\n",
"qHSRG = Cp*(T4-T5) #Heat recovered in HSRG for steam generation(in kJ/kg):\n",
"hd = vc*(ph-pc)*10**2 #Enthalpy at exit of feed pump(in kJ/kg):\n",
"had = ha-hd #Heat added per kg of steam(in kJ/kg):\n",
"m = qHSRG/had #Mass of steam generated per kg of air:\n",
"WnetST = ha-hb-(hd-hc) #Net steam turbine cycle output(in kJ/kg):\n",
"sco = WnetST*m #Steam cycle output per kg(in kJ/kg air):\n",
"tco = WnetGT+sco #Total combined output(in kJ/kg air):\n",
"ncc = tco/qa #Combined cycle efficiency:\n",
"ngt = WnetGT/qa #Gas turbine efficiency:\n",
"\n",
"#Results:\n",
"print \"Overall efficiency\",round(ncc*100,2),\"%\" \n",
"print \"Steam per kg of air\",round(m,3),\"kg steam/kg air\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall efficiency 57.78 %\n",
"Steam per kg of air 0.119 kg steam/kg air\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16, page no. 394"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from __future__ import division\n",
"\n",
"\n",
"#Variable Declaration: \n",
"T1 = 27+273 #Temperature of working fuel at the beginning of compression(in K):\n",
"rp = 70 #Pressure ratio:\n",
"rv = 15 #Compression ratio:\n",
"r = 1.4 #Adiabatic index of compression:\n",
"\n",
"#Calculations:\n",
"T2 = T1*(rv)**(r-1) #Temperature at state 2(in K):\n",
"T3 = T2*rp/(rv**r) #Temperature at state 3(in K):\n",
"T4 = T3+(T3-T2)/r #Temperature at state 4(in K):\n",
"T5 = T4*(T3/T4*rv)**(1-r) #Temperature at state 5(in K):\n",
"n = 1-(T5-T1)/(r*(T4-T3)+(T3-T2))#Air standard thermal efficiency:\n",
"\n",
"#Results:\n",
"print \"Air standard thermal efficiency\",round(n*100,2),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Air standard thermal efficiency 65.3 %\n"
]
}
],
"prompt_number": 34
}
],
"metadata": {}
}
]
}
|