summaryrefslogtreecommitdiff
path: root/Applied_Thermodynamics/Chapter11.ipynb
blob: 57bf66e389295a5a87d75ce13edbcbe45ea869c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
{
 "metadata": {
  "name": "",
  "signature": "sha256:6a2922d727738ae70604bae46fb35f03608e71a4b1a12c93dd485fb1323281a2"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 11: Boilers and Boiler Calculations"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1, page no. 481"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "H = 30 #Height of chimney(in m):\n",
      "Ta = 27+273 #Ambient air temperature(in K):\n",
      "m = 20 #Mass per kg of fuel required for complete combustion(in kg):\n",
      "hw = 12 #Height in the water column(in mm):\n",
      "\n",
      "#Calculations:\n",
      "Tg = (Ta*353*H)/(353*H-hw*Ta)*(m)/(m+1)#Temperature of burnt gases(in K):\n",
      "\n",
      "#Results:\n",
      "print \"Temperature of the burnt gases: \",round(Tg,2),\"K\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature of the burnt gases:  432.86 K\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2, page no. 482"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "m = 18 #Mass per kg of fuel required for complete combustion(in kg):\n",
      "hw = 20 #Height in the water column(in mm):\n",
      "Ta = 27+273 #Ambient air temperature(in K):\n",
      "Tg = 300+273 #Temperature of burnt gases(in K):\n",
      "\n",
      "#Calculations:\n",
      "H = hw/(353*(1/Ta-(m+1)/(m*Tg)))#Height of chimney(in m):\n",
      "\n",
      "#Results:\n",
      "print \"Height of chimney: \",round(H,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Height of chimney:  37.99 m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3, page no. 482"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "H = 20 #Height of chimney(in m):\n",
      "Tg = 380+273 #Temperature of burnt gases(in K):\n",
      "Ta = 27+273 #Ambient air temperature(in K):\n",
      "\n",
      "#Calculations:\n",
      "m = 2*Ta/(Tg-2*Ta)   #Air supplied(in kg air per fuel):\n",
      "\n",
      "#Results:\n",
      "print \"Air supplied:\",round(m,2),\"kg/kg of fuel\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Air supplied: 11.32 kg/kg of fuel\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4, page no. 482"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "H = 60   #Height of chimney(in m):\n",
      "Ta = 17+273 #Ambient air temperature(in K):\n",
      "Tg = 300+273 #Temperature of burnt gases(in K):\n",
      "Tga = 150+273 #Temperature of the artificial burnt gases(in K):\n",
      "m = 19  #Mass per kg of fuel required for complete combustion(in kg):\n",
      "Cpg = 1.0032 #Specific heat of hot gases(in kJ/kg.K):\n",
      "c = 32604 #Calorific value of burnt fuel(in kJ/kg):\n",
      "\n",
      "#Calculations:\n",
      "hw = 353*H*(1/Ta-(m+1)/(m*Tg)) #Draught (in mm of water column):\n",
      "n = 9.81*H*(m/(m+1)*Tg/Ta-1)/(Cpg*(Tg-Tga)*10**3)*100 #Chimney efficiency:\n",
      "Q = (m+1)*Cpg*(Tg-Tga) #Extra heat carried away by flue gases(in kJ):\n",
      "\n",
      "#Results:\n",
      "print \"Draught: \",round(hw,2),\" mm of water\"\n",
      "print \"Chimney efficiency\",round(n,4),\"%\"\n",
      "print \"Extra heat carried away by flue gases per kg of fuel burnt\",round(Q,1),\" kJ\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Draught:  34.13  mm of water\n",
        "Chimney efficiency 0.3431 %\n",
        "Extra heat carried away by flue gases per kg of fuel burnt 3009.6  kJ\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5, page no. 483"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "H = 80   #Height of chimney(in m):\n",
      "Ta = 27+273 #Ambient air temperature(in K):\n",
      "m = 20 #Mass per kg of fuel required for complete combustion(in kg):\n",
      "Tga = 110+273 #Temperature of the artificial burnt gases(in K):\n",
      "Cpg = 1.0032 #Specific heat of hot gases(in kJ/kg.K):\n",
      "\n",
      "#Calculations:\n",
      "Tg = Ta*2*(m+1)/m #Temperature of burnt gases(in K):\n",
      "hw = 353*H*(1/Ta-(m+1)/(m*Tg)) #Draught in water column(in mm):\n",
      "n = 9.81*H*(m/(m+1)*Tg/Ta-1)/(Cpg*(Tg-Tga)*10**3)*100 #Chimney efficiency:\n",
      "\n",
      "#Results:\n",
      "print \"Hot gas temperature in chimney: \",round(Tg),\"K\"\n",
      "print \"Natural draught: \",round(hw,2),\"mm of water\"\n",
      "print \"Chimney efficiency: \",round(n,4),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hot gas temperature in chimney:  630.0 K\n",
        "Natural draught:  47.07 mm of water\n",
        "Chimney efficiency:  0.3167 %\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6, page no. 484"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "   \n",
      "from math import sqrt,pi\n",
      "\n",
      "#Variable Declaration: \n",
      "R = 2.5*10**3 #Rate at which coal is burnt(in kg/hr):\n",
      "m = 20   #Mass per kg of fuel required for complete combustion(in kg):\n",
      "Tg = 327+273 #Temperature of burnt gases(in K):\n",
      "Ta = 27+273 #Ambient air temperature(in K):\n",
      "h = 7+6+3+2 #Pressure head(in mm):\n",
      "na = 0.90 #Ratio of actual natural draught to theoretical draught:\n",
      "g = 9.81 #Acceleration due to gravity(in m/s**2):\n",
      "\n",
      "#Calculations:\n",
      "hw = h/na #Actual natural draught(in mm of water):\n",
      "H = hw/(353*(1/Ta-(m+1)/(m*Tg))) #Height of chimney(in m):\n",
      "dg = 353/Tg*(m+1)/m #Density of hot gases(in kg/m**3):\n",
      "hg = H*((m+1)/m*Tg/Ta-1) #Height of hot gases column(in m):\n",
      "Mg = R*hw/3600 #Mass flow rate of hot gases(in kg/s):\n",
      "C = sqrt(2*g*hg) #Velocity of got gases(in m/s):\n",
      "D = sqrt((4*Mg)/(pi*C*dg)) #Diameter of chimney(in m):\n",
      "\n",
      "#Results:\n",
      "print \"Height of chimney:\",round(H,2),\"m\"\n",
      "print \"Diameter of chimney:\",round(D,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Height of chimney: 35.78 m\n",
        "Diameter of chimney: 1.01 m\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7, page no. 485"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      " \n",
      "#Variable Declaration: \n",
      "hw = 50    #Draught in water column(in mm):\n",
      "T = 300+273 #Temperature of burnt gases(in K):\n",
      "m = 19   #Mass per kg of fuel required for complete combustion(in kg):\n",
      "T1 = 27+273 #Ambient air temperature(in K):\n",
      "T0 = 273 #Zero temperature(in K):\n",
      "n = 0.90 #Mechanical efficiency:\n",
      "d = 1.293 #Density of hot gases(in kg/m**3):\n",
      "\n",
      "#Calculations:\n",
      "M = 2000/3600 #Rate at which coal is burnt(in kg/s):\n",
      "P = hw*9.81 #Pressure applied by the draught water(in N/m**2):\n",
      "PFD = P*m*M*T1/(d*T0*n*1000) #Power required in FD fan(kW):\n",
      "P1D = P*m*M*T/(d*T0*n*1000) #Power required in 1D fan(kW):\n",
      "\n",
      "#Results:\n",
      "print \"Power for FD fan:\",round(PFD,2),\"kW\"\n",
      "print \"Power for 1D fan:\",round(P1D,2),\"kW\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Power for FD fan: 4.89 kW\n",
        "Power for 1D fan: 9.34 kW\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8, page no. 486"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "Cpg = 1.0032 #Specific heat of hot gases(in kJ/kg.K):\n",
      "Tg = 177+273 #Temperature of burnt gases(in K):\n",
      "Ta = 27+273 #Ambient air temperature(in K):\n",
      "Tn = 327+273 #Natural draught temperature(in K):\n",
      "mn = 25     #Mass per kg of fuel required for natural draught(in kg):\n",
      "ma = 20  #Mass per kg of fuel required for artificial draught(in kg):\n",
      "r = Tg/Ta #Ratio of brake power for induced draught to forced draught:\n",
      "\n",
      "#Calculations:\n",
      "Qgad = (ma+1)*Cpg*(Tg-Ta) #Heat carried by hot flue gases in artificial draught(in per kg of fuel burnt):\n",
      "Qgnd = (mn+1)*Cpg*(Tn-Ta) #Heat carried by hot flue gases in natural draught(in per kg of fuel burnt):\n",
      "rh = Qgad/Qgnd #Ratio of heat carried away:\n",
      "\n",
      "#Results:\n",
      "print \"Ratio of power required: \",round(r,1)\n",
      "print \"Ratio of heat carried away: \",round(rh,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Ratio of power required:  1.5\n",
        "Ratio of heat carried away:  0.404\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9, page no. 486"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "T = 27+273 #Feed water supply temperature(in K):\n",
      "P = 10    #Mean steam generation pressure(in bar):\n",
      "x = 0.95 #Dryness fravtion of steam generated:\n",
      "Q = 2500 #Feed water supplied(in kg/hr):\n",
      "Q1 = 275 #Coal burnt(in kg/hr):\n",
      "d = 300   #Difference in mass of water after trial:\n",
      "hf = 762.81 #kJ/kg #From steam tables:\n",
      "hg = 2778.1 #kJ/kg\n",
      "hfg = 2015.29 #kJ/kg\n",
      "\n",
      "#Calculations:\n",
      "h = hf+x*hfg #Enthalpy of steam generated(in kJ/kg):\n",
      "mw = Q+d #Mass of water evaporator per hour(in kg/hr):\n",
      "Ae = mw/Q1 #Actual evaporation(in per kg of coal):\n",
      "Ee = Ae*h/2257 #Equivalent evaporation(in kg per kg of coal):\n",
      "\n",
      "#Results:\n",
      "print \"Actual evaporation: \",round(Ae,2),\" kg per kg of coal\"\n",
      "print \"Equivalent evaporation: \",round(Ee,2),\"kg per kg of coal\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Actual evaporation:  10.18  kg per kg of coal\n",
        "Equivalent evaporation:  12.08 kg per kg of coal\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10, page no. 487"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "  \n",
      "#Variable Declaration: \n",
      "p = 10  #Average pressure of the steam(in bar):\n",
      "Ww = 15  #Weight of water consumed(in ton):\n",
      "Wc = 1.5 #Weight of coal produced(in ton):\n",
      "n = 1-0.03-0.04 #Percentage coal that caan be burnt:\n",
      "nm = 0.03 #Composition of moisture in coal:\n",
      "Tf = 35  #Temperature of feed water(in C):\n",
      "hg = 2778.1     #From steam tables(kJ/kg) \n",
      "\n",
      "#Calculations:\n",
      "h = hg-4.18*Tf #Enthalpy of steam generated(in kJ/kg):\n",
      "m = Ww/Wc #Steam generated per kg of coal(in kg):\n",
      "nb = m*h/(30.1*10**3)*100 #Boiler efficiency:\n",
      "Ee = m*h/(2257*(1-nm)) #Equivalent evaporation per kg of dry coal(in kg:\n",
      "Eea = Ee*(1-nm)/n #Equivalent evaporation per kg of combustible present in coal(in kg):\n",
      "\n",
      "#Results:\n",
      "print \"Boiler efficiency: \",round(nb,2),\"%\"\n",
      "print \"Equivalent evaporation per kg of dry coal: \",round(Ee,2),\"kg\"\n",
      "print \"Equivalent evaporation per kg of combustible present in coal: \",round(Eea,2),\"kg\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Boiler efficiency:  87.44 %\n",
        "Equivalent evaporation per kg of dry coal:  12.02 kg\n",
        "Equivalent evaporation per kg of combustible present in coal:  12.54 kg\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11, page no. 488"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "t = 24 #Time of trial(in hrs):\n",
      "p = 16 #Pressure at which steam is generated(in bar):\n",
      "c = 10000 #Coal consumed(in kg):\n",
      "r = 2500 #Rate of steam generation(in kg/hr):\n",
      "Tf = 27    #Feed water temperature(in C):\n",
      "hsa = 3000 #Total heating surface area(in m**2):\n",
      "ga = 4   #Total grate area(in m**2):\n",
      "C = 28000 #Calorific value of coal(in kJ/kg):\n",
      "hg = 2794   #From steam tables(kJ/kg)\n",
      "L = 2257 #Latent heat at 100 C:\n",
      "\n",
      "#Calculations:\n",
      "m = c/t  #Coal  burnt per hour(in kg/hr):\n",
      "mg = m/ga #Coal burnt per m**2 of grate per hour:\n",
      "r1 = r/m #Rate of steam generated per kg of coal(in kg steam/kg coal):\n",
      "Q = r1*(hg-4.18*Tf)  #Heat added to steam per kg of coal(in kJ):\n",
      "Ee = Q/L #Equivalent evaporation from and at 100 C per kg of coal(in kg):\n",
      "Eepm = Ee*m/hsa #Equivalent evaporation from and at 100 C per m**2 of total surface per hour(in kg):\n",
      "n = Ee*L/C*100 #Boiler efficiency:\n",
      "\n",
      "#Results:\n",
      "print \"Mass of coal burnt per m**2 of grate per hour: \",round(mg,2),\"kg\"\n",
      "print \"Equivalent evaporation from and at 100 C per kg of coal: \",round(Ee,2),\"kg\"\n",
      "print \"Equivalent evaporation from and at 100 C per m**2 of total surface per hour: \",round(Eepm,2),\"kg\"\n",
      "print \"Boiler efficiency: \",round(n,2),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mass of coal burnt per m**2 of grate per hour:  104.17 kg\n",
        "Equivalent evaporation from and at 100 C per kg of coal:  7.13 kg\n",
        "Equivalent evaporation from and at 100 C per m**2 of total surface per hour:  0.99 kg\n",
        "Boiler efficiency:  57.45 %\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12, page no. 489"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "p = 30 #Pressure at which steam is generated(in bar):\n",
      "Ts = 300 #Temperature of steam(in C):\n",
      "r = 11  #Rate at which feed water enters(in kg/s):\n",
      "T1 = 100 #Temperature at which feed water enters the economiser(in C):\n",
      "m = 5000 #Mass of fuel used(in kg):\n",
      "C = 35000 #Calorific value of fuel(in kJ/kg.K):\n",
      "T = 27  #Temperature of feed water(in C):\n",
      "hg = 2993.5 #From steam tables:\n",
      "L = 2257 #Latent heat at 100 C:\n",
      "\n",
      "#Calculations:\n",
      "ms = r*3600/m #Mass of steam genrated per kg of fuel(in kg/kg fuel):\n",
      "Q = hg-4.18*T #Heat added per kg of fuel(in kJ):\n",
      "Ee = ms*Q/L #Equivalent evaporation from and at 100 C per kg of coal(in kg):\n",
      "n = Ee*L/C*100 #Boiler efficiency:\n",
      "Q1 = ms*4.18*(T1-T)  #Heat utilised in economiser per kg of fuel(in kJ):\n",
      "P = Q1/C*100 #Percentage of energy utilised in economiser:\n",
      "\n",
      "#Results:\n",
      "print \"Equivalent evaporation per kg of fuel: \",round(Ee,2),\"kg\"\n",
      "print \"Boiler efficiency: \",round(n,2),\"%\"\n",
      "print \"Percentage of energy utilised in economiser: \",round(P,1),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Equivalent evaporation per kg of fuel:  10.11 kg\n",
        "Boiler efficiency:  65.18 %\n",
        "Percentage of energy utilised in economiser:  6.9 %\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13, page no. 489"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "m = 8 #Mass of steam genrated per kg of fuel:\n",
      "Ts = 400 #Temperature of steam(in C):\n",
      "p = 30   #Pressure of feed water(in bar):\n",
      "T = 40  #Temperature of feed water(in C):\n",
      "T1 = 150 #Temperature at which feed water leaves the economiser(in C):\n",
      "x = 0.98 #Dryness fraction:\n",
      "C = 29000 #Calorific value(in kJ/kg.K):\n",
      "h = 3230.9 #Enthalpy of steam generated(in kJ/kg): #From steam tables:\n",
      "hf = 1008.42                            #kJ/kg\n",
      "hfg = 1795.78                           #kJ/kg\n",
      "\n",
      "#Calculations:\n",
      "Q = h-4.18*T #Heat to be added(in kJ):\n",
      "n = m*Q/C*100 #Boiler efficiency:\n",
      "Q1 = 4.18*(T1-T) #Heat added in economiser per kg of steam generated(in kJ/kg):\n",
      "r1 = Q1/Q*100 #Percentage fraction of heat in economiser:\n",
      "Q2 = (hf+x*hfg)-4.18*T1 #Heat added in evaporator per kg of steam generated(in kJ/kg):\n",
      "r2 = Q2/Q*100 #Percentage fraction of heat in economiser:\n",
      "Q3 = Q-Q1-Q2 #Heat added in super heater per kg of steam generated by difference(in kJ/kg):\n",
      "r3 = Q3/Q*100 #Percentage fraction of heat in economiser:\n",
      "\n",
      "#Results:\n",
      "print \"Boiler efficiency: \",round(n,2),\"%\"\n",
      "print \"Percentage fraction of heat in economiser: \",round(r1,2),\"%\"\n",
      "print \"Percentage fraction of heat in evaporator: \",round(r2,2),\"%\"\n",
      "print \"Percentage fraction of heat in superheater: \",round(r3,2),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Boiler efficiency:  84.52 %\n",
        "Percentage fraction of heat in economiser:  15.01 %\n",
        "Percentage fraction of heat in evaporator:  69.89 %\n",
        "Percentage fraction of heat in superheater:  15.1 %\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14, page no. 490"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "T1 = 20 #Temperature at which feed water enters and leaves the economiser(in C):\n",
      "T2 = 125\n",
      "r = 3 #Rate at which feed water leaves the economiser(in kg/s):\n",
      "T3 = 425 #Temperature of flue gases at inlet and outlet of economiser(in C):\n",
      "T4 = 300\n",
      "r1 = 18 #Rate at which coal is supplied(in kg/min):\n",
      "nc = 0.80 #% of C in coal:\n",
      "Cpg = 1.05 #Specific heat of flue gases(in kJ/kg.K):\n",
      "Ta = 15 #Atmospheric temperature(in C):\n",
      "m1 = 23.65 #Mass of dry flue gases at inlet and exit of economiser(in kg):\t\t\t\t#From table:\n",
      "m2 = 24.78\n",
      "\n",
      "#Calculations:\n",
      "A = m2-m1 #Air leakage in economiser per kg of coal:\n",
      "Q1 = m1*Cpg*T3+A*Cpg*Ta #Heat entering economiser with flue gases and leakage(in kJ):\n",
      "Q2 = m2*Cpg*T4   #Heat entering economiser with flue gases and leakage(in kJ):\n",
      "Q = Q1-Q2 #Heat lost in economiser per kg of coal(in kJ):\n",
      "Q3 = (r*60/r1)*4.18*(T2-T1)\t#Heat picked up by feed water in economiser per kg of coal(in kJ):\n",
      "\n",
      "#Results:\n",
      "print \"Heat released by the flue gases: \",round(Q,2),\"kJ per kg of coal\"\n",
      "print \"Air leakage: \",round(A,2),\"kg per kg of coal\"\n",
      "print \"Heat gained by feed water: \",round(Q3),\"kJ per kg of coal\"\n",
      "print \"___Please check there is a calculation mistake in book in calculating Q3____\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat released by the flue gases:  2765.91 kJ per kg of coal\n",
        "Air leakage:  1.13 kg per kg of coal\n",
        "Heat gained by feed water:  4389.0 kJ per kg of coal\n",
        "___Please check there is a calculation mistake in book in calculating Q3____\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 15, page no. 492"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "CpKg = 0.84                             #Carbon present per kg:\n",
      "CpKgDf = 0.0495                         #Carbon present per kgof dry fluegas:\n",
      "sg = 8                                  #Steam generated (kg per kg of coal):\n",
      "mh = 0.04*9 #H2O produced during the combustion(kg per kg of coal):\n",
      "ash = 0.05                              #Ash produced duing cumbustion(kg per kg of coal):\n",
      "M = 0.015                               #Moisture in coal burnt per kg of coal:\n",
      "h = 3213.6                              #Enthalpy of heat generated at 40 bar 400\u00b0C (KJ/Kg):\n",
      "C = 4.18                                #Heat capacity of water (KJ/Kg.K):\n",
      "Ti =  27                                #Feed water temperature at inlet to economiser (\u00b0C):\n",
      "Te = 137                                #Feed water temperature at exit of economiser(\u00b0C):\n",
      "Tfe = 300                               #Flue gas temperature entering air heater(\u00b0C):\n",
      "Tae = 120                               #Temperature of air entering boiler furnace(\u00b0C):\n",
      "Tatm = 15                               #Atmospheric air temperature(\u00b0C):\n",
      "Hs = 32600                              #Heat supplied by the fuel(KJ/Kg coal):\n",
      "cp = 1.0032                             #Heat capacity of air and dry gas (KJ/Kg.K):\n",
      "sp = 2.0064                             #Specific pressure of vapour(KJ/Kg.K):\n",
      "\n",
      "#Calculations:\n",
      "md = CpKg/CpKgDf #Mass of dry flue gas per kg of coal: #Specific pressure of vapour  =  2.0064 kJ/kg K\t\t\t\t#Partial pressure of vapour in flue gas  =  0.075 bar\t\t\t\t#For air and dry flue gas, cp  = 1.0032 kJ/kg K\t\t\t\t#Calorific value of coal  =  32600 kJ/kg\t\t\t\t#Datum temperature  =  15C\t\t\t\t#Dry flue gas composition by volume  =  12.5% CO2, 7.5% O2, 80% N2\t\t\t\t#Dry coal composition by mass  =  84% C, 4% H2, 7% O2 and remainder ash\t\t\t\t#Temperature of air entering boiler furnace  =  120C\t\t\t\t#Flue gas temperature leaving air heater and entering chimney  =  150C\t\t\t\t#Flue gas temperature entering air heater  = 300C\t\t\t\t#Moisture in coal burnt  =  1.5%\t\t\t\t#Feed water temperature at exit of economiser  =  137C\t\t\t\t#Feed water temperature at inlet to economiser  =  27C\t\t\t\t#Steam generated per kg of coal  =  8 kg\t\t\t\t#Steam generation: 40 bar, 400C\t\t\t\t#Atmospheric air temperature: 15C\n",
      "ma = md-(1-ash-mh)  #Amount of air supplied for combustion of one kg of dry coal(in kg):\n",
      "m = M/(1-M)  #Moisture per kg of dry coal(in kg):\n",
      "mt = round(mh+m,4)#Total moisture per kg of coal(in kg):\n",
      "sgd = sg/(1-M)  #Steam generated per kg of dry coal(in kg steam):\n",
      "H = sgd*(h-C*Ti)                       #Heat utilized by steam per kg of coal(KJ):\n",
      "n = H/Hs*100 #Boiler efficiency:\n",
      "Hu = ma*cp*(Tae-Tatm)                   #Heat utilized by air(KJ/Kg of coal)\n",
      "Ha = (md*cp+mt*sp)*(Tfe-Te)             #Heat available in air heater(KJ/Kg of coal):\n",
      "na = Hu/Ha*100 #Efficiency of heat exchange in air heater:\n",
      "\n",
      "#Results:\n",
      "print \"Boiler efficiency: \",round(n,2),\"%\"\n",
      "print \"Efficiency of heat exchange in air heater: \",round(na,2),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Boiler efficiency:  77.25 %\n",
        "Efficiency of heat exchange in air heater:  59.54 %\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 17, page no. 496"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "p = 20 #Pressure at which steam is generated(in bar):\n",
      "Ts = 300 #Temperature at which steam is generated(in C):\n",
      "T1 = 50 #Temperature of feed water supplied to the boiler(in C):\n",
      "C = 30000 #Calorific value of fuel(in kJ/kg):\n",
      "r = 600 #Rate at which coal is used(in kg/hr):\n",
      "r1 = 5000 #Rate at which steam is generated(in kg/hr):\n",
      "T = 100 #Temperature of the boiler unit(in C):\n",
      "L = 2257 #Latent heat(in kJ/kg.K):\n",
      "\n",
      "#Calculations:\n",
      "ms = r1/r #Steam generation per unit coal burnt per hour:\n",
      "hfi = 3023.5 #Final enthalpy of the steam(in kJ/kg):\n",
      "hfw = 209.33 #Enthalpy of feed water(in kJ/kg):\n",
      "no = ms*(hfi-hfw)/C*100 #Overall efficiency of boiler:\n",
      "Ee = ms*(hfi-hfw)/L #Equivalent evaporation of boiler unit(in kg steam per kg of coal):\n",
      "Eea = Ee*r #Equivalent evaporation of boiler unit at 100 C(in kg/hr):\n",
      "hfw1 = 313.93 #After fitting economiser the enthalp of feed water(in kJ/kg):\n",
      "nom = no+5 #Modified overall efficiency of boiler unit:\n",
      "mc = (hfi-hfw1)*r1*100/(C*nom) #Coal consumption(in kg/hr):\n",
      "s = r-mc #Saving of coal(in kg/hr):\n",
      "\n",
      "#Results:\n",
      "print \"Saving of coal: \",round(s,2),\"kg/hr\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Saving of coal:  57.03 kg/hr\n"
       ]
      }
     ],
     "prompt_number": 36
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18, page no. 497"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "\n",
      "#Variable Declaration: \n",
      "r = 5000 #Rate at which steam is generated(in kg/hr):\n",
      "p = 20 #Pressure of steam(in bar):\n",
      "x = 0.98 #Dryness fraction:\n",
      "T = 60   #Temperature of feed water(in \u00b0C):\n",
      "r1 = 600 #Rate at which coal is supplied(in kg/hr):\n",
      "r2 = 16 #Rate at which air is supplied(in kg per kg coal):\n",
      "C = 30000 #Cslorific value of coal(in kJ/kg):\n",
      "Tr = 20   #Temperature of boiler room(in \u00b0C):\n",
      "nl = 0.86 #Fraction of heat losr with flue gases:\n",
      "Cpg = 1.005 #Specific heat of flue gases(in kJ/kg.K):\n",
      "#From steam tables:\n",
      "hf = 908.79                             #kJ/kg\n",
      "hfg = 1890.7                            #kJ/kg\n",
      "\n",
      "#Calculations:\n",
      "ms = r/r1 #Mass of steam genrated per kg of coal:\n",
      "hfi = hf+x*hfg #Enthalpy of final steam produced(in kJ/kg):\n",
      "hfw = 251.13 #Enthalpy of feed water(in kJ/kg):\n",
      "Q = ms*(hfi-hfw) #Heat used for steam generation(in kJ per kg of coal):\n",
      "Ql = C-Q #Heat lost per kg of coal:\n",
      "Qlf = nl*Ql #Heat lost with flue gases(in kJ per kg of coal):\n",
      "Tgas = Tr+Qlf/((r2+1)*Cpg) #Temperature of flue gases(in \u00b0C):\n",
      "\n",
      "#Results:\n",
      "print \"Temperature of flue gases: \",round(Tgas,2),\" \u00b0C\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature of flue gases:  476.99  \u00b0C\n"
       ]
      }
     ],
     "prompt_number": 38
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 19, page no. 498"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      " \n",
      "#Variable Declaration: \n",
      "Ta = 20+273 #Ambient temperature(in K):\n",
      "V = 20 #Velocity(in m/s):\n",
      "hw1 = 30 #Draught lost through grate(in mm of water column):\n",
      "nm = 0.80 #Mechanical efficiency:\n",
      "mf = 1000 #Rate at which coal is burnt(in kg/hr):\n",
      "ma = 16  #Rate at which air is supplied(in kg/hr):\n",
      "pa = 1.01325 #Ambient pressure(in bar):\n",
      "d = 1.29 #Density of air(in kg/m**3):\n",
      "g = 9.81 #Acceleration due to gravity(in m/s**2):\n",
      "T0 = 273 #Zero temperature(in K):\n",
      "\n",
      "#Calculations:\n",
      "P1 = d*V**2/2 #Pressure equivalent to velocity head(in N/m**2):\n",
      "P = P1/g                                #mm of water column\n",
      "hw = hw1+P #Total draught loss(in mm of water column):\n",
      "p = hw*g #Pressure required(in N/m**2):\n",
      "PFD = p*mf*ma*Ta/(d*T0*nm*3600) #F.D. fan power requirement(in W):\n",
      "\n",
      "#Results:\n",
      "print \"F.D. fan power: \",round(PFD/10**3,2),\"KW\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "F.D. fan power:  2.55 KW\n"
       ]
      }
     ],
     "prompt_number": 40
    }
   ],
   "metadata": {}
  }
 ]
}