summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_9.ipynb
blob: 579b6def0143b13e35fad664c9ec6bd1b924a5fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9: Fibre Optics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.1, Page 463"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu_1 = 1.55;  # Refractive index of the core \n",
      "mu_2 = 1.50;  # Refractive indices of cladding \n",
      "\n",
      "#Calculations\n",
      "NA = mu_1*sqrt(2*(mu_1-mu_2)/mu_1); \n",
      "print \"The NA of the optical fibre = %5.3f\"%NA\n",
      "theta_a = degrees(asin(NA));    # The acceptance angle of optical fibre, degrees\n",
      "\n",
      "#Result\n",
      "print \"The acceptance angle of the optical fibre is = %.1f degrees\"%theta_a\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The NA of the optical fibre = 0.394\n",
        "The acceptance angle of the optical fibre is = 23.2 degrees\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.2, Page 463"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu_1 = 1.50;  # Refractive index of the core \n",
      "mu_2 = 1.45;  # Refractive index cladding\n",
      "\n",
      "#Calculations&Results\n",
      "NA = mu_1*sqrt(2*(mu_1-mu_2)/mu_1);     # Numerical aperture of optical fibre\n",
      "print \"The NA of the optical fibre = %5.3f\"%NA\n",
      "theta_a = degrees(asin(NA));        # The acceptance angle of optical fibre, degrees\n",
      "print \"The acceptance angle of the optical fibre = %5.2f degrees\"%theta_a\n",
      "theta_c = degrees(asin(mu_2/mu_1)); # The critical angle of the optical fibre, degrees\n",
      "print \"The acceptance angle of the optical fibre = %4.1f degrees\"%theta_c\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The NA of the optical fibre = 0.387\n",
        "The acceptance angle of the optical fibre = 22.79 degrees\n",
        "The acceptance angle of the optical fibre = 75.2 degrees\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.3, Page 464"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu0 = 1;  # Refactive index of fibre in air\n",
      "mu2 = 1.59;  # Refactive index of the cladding \n",
      "NA = 0.2;  # Numerial aperture of optical fibre\n",
      "\n",
      "#Calculations\n",
      "mu1 = sqrt(NA**2+mu2**2);  # Refractive index of core\n",
      "mu0 = 1.33;     # Refactive index of fibre in water\n",
      "NA = sqrt(mu1**2-mu2**2)/mu0;    # Numerial aperture of optical fibre in water\n",
      "theta_a = degrees(asin(NA));    # Acceptance angle for the fibre in water\n",
      "\n",
      "#Result\n",
      "print \"The acceptance angle for the optical fibre in water = %3.1f degrees\"%theta_a\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The acceptance angle for the optical fibre in water = 8.6 degrees\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.4, Page 464"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu0 = 1;        # Refractive index of air\n",
      "mu1 = 1.50;  # Refractive index of glass core`\n",
      "delta = 0.005;  # Fractional change in refractive index\n",
      "\n",
      "#Calculations&Results\n",
      "mu2 = mu1*(1-delta);      # Refractive index of cladding\n",
      "print \"The refractive index of cladding =%6.4f\"%mu2\n",
      "theta_c = degrees(asin(mu2/mu1));   # Critical angle, degrees\n",
      "print \"The critical angle = %5.2f degrees\"%theta_c\n",
      "theta_a = degrees(asin(sqrt(mu1**2-mu2**2)/mu0));     # Acceptance angle, degrees\n",
      "print \"The value of acceptance angle is = %4.2f degrees\"%theta_a\n",
      "NA = mu1*sqrt(2*delta);      # Numerical aperture of optical fibre\n",
      "print \"The NA of the optical fibre = %4.2f\"%NA   #incorrect answer in the textbook\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The refractive index of cladding =1.4925\n",
        "The critical angle = 84.27 degrees\n",
        "The value of acceptance angle is = 8.62 degrees\n",
        "The NA of the optical fibre = 0.15\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.5, Page 465"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "NA = 0.22;      # Numerical aperture of the optical fibre\n",
      "delta = 0.012;  # Fractional difference between the refractive index of core and cladding\n",
      "\n",
      "#Calculations\n",
      "mu1 = NA/sqrt(2*delta);   # The refractive index of core of optical fibre\n",
      "print \"The refractive index of core = %4.2f\"%mu1\n",
      "mu2 = mu1*(1-delta);  # The refractive index of cladding of optical fibre\n",
      "\n",
      "#Result\n",
      "print \"The refractive index of cladding = %4.2f\"%mu2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The refractive index of core = 1.42\n",
        "The refractive index of cladding = 1.40\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.6, Page 466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu1 = 1.466;   # Refractive index of core\n",
      "mu2 = 1.460;   # Refractive index of cladding\n",
      "v = 2.4;  # Cut-off parameter of the optical fibre\n",
      "lamda = 0.8e-006;  # Operating wavelength, m\n",
      "\n",
      "#Calculations&Results\n",
      "NA = sqrt(mu1**2-mu2**2);\n",
      "print \"The NA of optical fibre = %4.2f\"%NA\n",
      "# Asthe cut-off parameter v of the optical fibre, v = 2*%pi*a*sqrt(mu1^2-mu2^2)/lambda, solving for a\n",
      "a = lamda*v/(2*pi*sqrt(mu1**2-mu2**2));\n",
      "print \"The core radius of the optical fibre = %4.2f micrometer\"%(a/1e-006)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The NA of optical fibre = 0.13\n",
        "The core radius of the optical fibre = 2.31 micrometer\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.7, Page 466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu1 = 1.54;    # The refractive index of core\n",
      "mu2 = 1.50;    # The refractive index of cladding\n",
      "lamda = 1.3e-006;  # Operating wavelength of optical fibre, m\n",
      "a = 25e-006;  # Radius of fibre core, m\n",
      "\n",
      "#Calculations\n",
      "v = 2*pi*a*sqrt(mu1**2-mu2**2)/lamda;   # V-number of optical fibre \n",
      "print \"The cut-off parameter of the optical fibre = %5.2f\"%v\n",
      "n = v**2/2;      # The number of modes supported by the fibre \n",
      "\n",
      "#Result\n",
      "print \"The number of modes supported by the fibre = %3d\"%(ceil(n))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The cut-off parameter of the optical fibre = 42.14\n",
        "The number of modes supported by the fibre = 888\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.8, Page 466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu1 = 1.54;  # Refractive index of core\n",
      "v = 2.405;  # Cut-off parameter of optical fibre\n",
      "lamda = 1.3e-006;  # Operating wavelength of optical fibre, m\n",
      "a = 1e-006;  # Radius of the core,\n",
      "\n",
      "#Calculations\n",
      "NA = v*lamda/(2*pi*a);    # Numerical aperture of optical fibre\n",
      "delta = 1./2*(NA/mu1)**2;   #  Fractional change in refractive index of core and cladding\n",
      "print \"The fractional difference of refractive indices of core and cladding = %7.5e\"%delta\n",
      "mu2 = mu1*(1-delta);     # Maximum value of refractive index of cladding\n",
      "print \"The maximum refractive index of cladding = %5.3f\"%mu2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fractional difference of refractive indices of core and cladding = 5.22018e-02\n",
        "The maximum refractive index of cladding = 1.460\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.9, Page 467"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu1 = 1.45;  # Index of refraction of core\n",
      "NA = 0.16;  # Numerical aperture of step index fibre\n",
      "a = 3e-006;  # Radius of the core, m\n",
      "lamda = 0.9e-006;  # Operating wavelength of optical fibre, m\n",
      "\n",
      "#Calculations\n",
      "v = 2*pi*a*NA/lamda;      # The normalized frequency or v-number of optical fibre\n",
      "\n",
      "#Result\n",
      "print \"The normalized frequency of the optical fibre = %5.2f\"%v\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The normalized frequency of the optical fibre =  3.35\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.10, Page 467"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu1 = 1.52;  # Refractive index of core\n",
      "a = 14.5e-006;  # Radius of the fibre core, m\n",
      "delta = 0.0007;  # Fractional index difference\n",
      "lamda = 1.3e-006;  # Operating wavelength of optical fibre, m\n",
      "\n",
      "#Calculations&Results\n",
      "mu2 = mu1*(1-delta);      # Refractive index of cladding\n",
      "v = 2*pi*a*sqrt(mu1**2-mu2**2)/lamda;     # Cut-off parameter v of the optical fibre\n",
      "print \"The cut-off parameter of the optical fibre = %5.3f\"%v\n",
      "#The is number of modes supported by the fibre given by,\n",
      "n = v**2/2;\n",
      "print \"The number of modes supported by the fibre = %d\"%(ceil(n))\n",
      "#Incorrect answer in the textbook for mu2. Hence the difference in answers"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The cut-off parameter of the optical fibre = 3.985\n",
        "The number of modes supported by the fibre = 8\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.11, Page 468"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "alpha = 3.5;  # Attenuation of the optical fibre, dB/km\n",
      "Pi = 0.5;  # Input power of optical fibre, mW\n",
      "L = 4;      # Distance through the optical wave transmits through the fibre, km\n",
      "\n",
      "#Calculations\n",
      "# As alpha = 10/L*log10(Pi/Po), solving for Po\n",
      "Po = Pi/exp(alpha*L*2.3026/10); # Output power of optical fibre, mW\n",
      "\n",
      "#Result\n",
      "print \"The output power of optical fibre = %4.1f micro-watt\"%(Po/1e-003)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The output power of optical fibre = 19.9 micro-watt\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.12, Page 468"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "Pi =1;  # Input power of optical fibre, mW\n",
      "Po = 0.85;  # Outptu power of optical fibre, mW\n",
      "L = 0.5;  #The distance through the optical wave transmits through the fibre, km \n",
      "\n",
      "#Calculations\n",
      "alpha = (10/L)*log10(Pi/Po);      # The attenuation of power through the optical fibre\n",
      "\n",
      "#Result\n",
      "print \"The attenuation of power through the optical fibre = %5.3f dB/km\"%alpha\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The attenuation of power through the optical fibre = 1.412 dB/km\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9.13, Page 469"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "C = 0.8;    # Connector loss per km, dB\n",
      "F = 1.5;    # Fibre loss per km, dB\n",
      "alpha = C + F;  # Attenuation of power the optical fibre, dB/km\n",
      "Po = 0.3e-006;  # Output power of optical fibre, W\n",
      "L = 15;  # The distance through the optical wave transmits through the fibre, km\n",
      "\n",
      "#Calculations\n",
      "#As the attenuation, alpha = 10/L*log(Pi/Po), solving for Pi\n",
      "Pi = Po*exp(2.3026*alpha*L/10);     # Input power of optical fibre, mW\n",
      "\n",
      "#Result\n",
      "print \"The minimum input power to optical fibre = %5.3f mW\"%(Pi/1e-003)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum input power to optical fibre = 0.846 mW\n"
       ]
      }
     ],
     "prompt_number": 27
    }
   ],
   "metadata": {}
  }
 ]
}