1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: Ultrasonics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1, Page 429"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"d = 8e-004; # Thickness of the piece of piezoelectric crystal, m\n",
"v = 5760; # Velocity of ultrasonic waves in the piece of piezoelectric crystal, m/s\n",
"\n",
"#Calculations\n",
"n = v/(2*d); # The frequency of the fundamental mode of ultrasonic wave, Hz\n",
"\n",
"#Result\n",
"print \"The frequency of the fundamental mode of ultrasonic wave = %3.1f MHz\"%(n/1e+006)\n",
"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The frequency of the fundamental mode of ultrasonic wave = 3.6 MHz\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2, Page 430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"d = 2e-003; # Thickness of the piece of quarts crystal, m\n",
"rho = 2650; # Density of the crystal, kg/meter-cube\n",
"Y = 7.9e+010; # Value of Youngs Modulus, N/metre-square\n",
"\n",
"#Calculations\n",
"n = 1/(2*d)*sqrt(Y/rho); #The frequency of the fundamental mode of vibration, Hz\n",
"\n",
"#Result\n",
"print \"The frequency of the fundamental mode of vibration in quatrz crystal = %5.3f Hz\"%(n/1e+006)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The frequency of the fundamental mode of vibration in quatrz crystal = 1.365 Hz\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3, Page 430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"v = 5e+003; # Velocity of ultrasonic beam in steel plate, m/s\n",
"n = 25e+003; # Difference between two neighbouring harmonic frequencies (Nm - Nm_minus1), Hz \n",
"\n",
"#Calculations\n",
"d = v/(2*n); # The thickness of steel plate, m\n",
"\n",
"#Result\n",
"print \"The thickness of steel plate = %3.1f m\"%d\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of steel plate = 0.1 m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4, Page 430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"n = 1e+006; # Frequency of Ultrasonic waves, Hz \n",
"C = 2.5e-014; # Capcitance of capacitor, F\n",
"\n",
"#Calculations\n",
"# Frequency of elecric oscillations is given by n = 1/(2*%pi)*sqrt(1/(L*C)), solving for L\n",
"L = 1/(4*pi**2*n**2*C); # The inductance of an inductor to produce ultrasonic waves, henry\n",
"\n",
"#Result\n",
"print \"The inductance of an inductor to produce ultrasonic waves = %d henry\"%L\n",
"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The inductance of an inductor to produce ultrasonic waves = 1 henry\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.5, Page 431"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"d = 50e-002; # Thickness of the metallic rod, m\n",
"t1 = 30e-006; # Arrival time for first pulse, s\n",
"t2 = 80e-006; # Arrival time for second pulse, s\n",
"\n",
"#Calculations&Results\n",
"v = 2*d/t2; # Velocity of ultrasonic waves, m/s\n",
"print \"The velocity of pulse inside the rod = %4.2e m/s\"%v\n",
"x = t1*v/2;\n",
"print \"The position of pulse inside the rod = %6.4f m\"%x\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity of pulse inside the rod = 1.25e+04 m/s\n",
"The position of pulse inside the rod = 0.1875 m\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.6, Page 431"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"I = 2.5e+004; # Sound intensity, W/meter-square\n",
"v = 1480; # Sound velocity, m/s\n",
"rho_w = 1000; # Density of water, kg/meter-cube\n",
"rho_c = 2650; # Density of crystal of transducer, kg/meter-cube\n",
"d = 0.001; # Thickness of the quartz, m\n",
"f = 20e+003; # Frequency of sound in water, Hz\n",
"\n",
"#Calculations&Results\n",
"# As sound intensity, I = p^2/(2*rho1*v), solving for p\n",
"p = sqrt(2*rho_w*v*I); # Pressure in the medium, N/metre-square\n",
"a = p/(d*rho_c); # Maximum acceleration of the quartz ultrasonic transducer, metre/second-square\n",
"print \"The maximum acceleration produced in quartz transducer = %4.2e metre/second-square\"%a\n",
"y = a/(2*pi*f)**2; # Maximum displacement of the quartz transducer, m\n",
"print \"The maximum displacement of quartz transducer = %3.1f micrometer\"%(y/1e-006)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum acceleration produced in quartz transducer = 1.03e+05 metre/second-square\n",
"The maximum displacement of quartz transducer = 6.5 micrometer\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.7, Page 432"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"L = 0.2; # Length of a magnetostrictive hydrophone, m\n",
"lamda = 2*L; # Wavelength of ultrasonic wave, m\n",
"v = 4900; # Velocity of ultrasonic beam in water, m/s\n",
"\n",
"#Calculations\n",
"f = v/lamda; # Fundamental frequency of ultrasonic, KHz\n",
"\n",
"#Result\n",
"print \"The fundamental frequency of a magnetostrictive hydrophone = %4.2f KHz\"%(f/1e+03)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fundamental frequency of a magnetostrictive hydrophone = 12.25 KHz\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8, Page 432"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"v = 3700; # Velocity of ultrasonic beam in copper, m/s\n",
"t = 1e-006; # Delay time for ultrasonic beam, s\n",
"\n",
"#Calculations\n",
"L = v*t; # # Length of a copper wire required for a delay, m\n",
"\n",
"#Result\n",
"print \"The length of a copper wire required for a delay = %6.4f m\"%L\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The length of a copper wire required for a delay = 0.0037 m\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|