1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 19: Superconductivity"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.1, Page 959"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_c = 6.2; # Critical temperature of lead in superconducting state, K\n",
"T = 4; # Temperature at which critical field of lead is to be found out, K\n",
"H_c0 = 0.064; # Critical field for lead at 0 K, MA/m\n",
"\n",
"#Calculation\n",
"H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, MA/m\n",
"\n",
"#Result\n",
"print \"The critical field for lead at 4 K = %5.3f MA/m\"%H_cT\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical field for lead at 4 K = 0.037 MA/m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.2, Page 959"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"T_c1 = 4.153; # Critical temperature of mercury for its one isotope, K\n",
"M1 = 200.59; # Mass of first isotope of mercury, amu\n",
"M2 = 204; # Mass of second isotope of mercury, amu \n",
"\n",
"#Calculation \n",
"# From isotopic effect of superconductivity,\n",
"# T_c2/T_c1 = sqrt(M1/M2), solving for T_c2\n",
"T_c2 = T_c1*sqrt(M1/M2); # Critical temperature of mercury for second isotope, K\n",
"\n",
"#Result\n",
"print \"The critical temperature of mercury for its isotope of mass 204 amu = %5.3f K\"%T_c2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical temperature of mercury for its isotope of mass 204 amu = 4.118 K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.3, Page 960"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"d = 1e-003; # Diameter of aluminium wire, m\n",
"r = d/2; # Radius of aluminium wire, m\n",
"H_c = 7.9e+003; # Critical magnetic field for Al, A/m\n",
"\n",
"#Calculation\n",
"I_c = 2*3.14*r*H_c; # Critical current through superconducting aluminium wire, A\n",
"\n",
"#Result\n",
"print \"The critical current through superconducting aluminium wire = %6.3f A\"%I_c\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical current through superconducting aluminium wire = 24.806 A\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.4, Page 960"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_c = 7.18; # Critical temperature of lead in superconducting state, K\n",
"H_c0 = 6.5e+004; # Critical field for lead at 0 K, A/m\n",
"# At T = 4.2 K\n",
"T = 4.2; # Temperature at which critical field of lead is to be found out, K\n",
"H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, A/m\n",
"d = 1e-003; # Diameter of lead wire, m\n",
"r = d/2; # Radius of lead wire, m\n",
"I_c = 2*3.14*r*H_cT; # Critical current through superconducting lead wire, A\n",
"J_c = I_c/(3.14*r**2); # Critical current density for superconducting lead wire, A/Sq. meter\n",
"print \"The critical current density at %3.1f K = %5.3e A/Sq.m\"%(T, J_c)\n",
"# At T = 7 K\n",
"T = 7; # Temperature at which critical field of lead is to be found out, K\n",
"H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, A/m\n",
"d = 1e-003; # Diameter of lead wire, m\n",
"r = d/2; # Radius of lead wire, m\n",
"I_c = 2*3.14*r*H_cT; # Critical current through superconducting lead wire, A\n",
"J_c = I_c/(3.14*r**2); # Critical current density for superconducting lead wire, A/Sq. meter\n",
"print \"The critical current density at %3.1f K = %4.2e A/Sq.m\"%(T, J_c)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical current density at 4.2 K = 1.710e+08 A/Sq.m\n",
"The critical current density at 7.0 K = 1.29e+07 A/Sq.m\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.5, Page 961"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T1 = 3; # Initial temperature of lead wire, K\n",
"T2 = 7.1; # Final temperature of lead wire, K\n",
"lambda1 = 39.6; # Initial London penetration depth for lead, mm\n",
"lambda2 = 173; # Final London penetration depth for lead, mm\n",
"\n",
"#Calculations\n",
"# As lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2) so\n",
"# (lambda1/lambda2)^2 = (T_c^4 - T2^4)/(T_c^4 - T1^4)\n",
"# Solving for T_c\n",
"T_c = ((T2**4-T1**4*(lambda1/lambda2)**2)/(1-(lambda1/lambda2)**2))**(1./4);\n",
"\n",
"#Result\n",
"print \"The critical temperature of lead = %5.3f K\"%T_c\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical temperature of lead = 7.193 K\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.6, Page 962"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_c = 7.2; # Critical temperature of lead in superconducting state, K\n",
"T = 5; # Temperature at which lead loses its superconducting state, K\n",
"H_cT = 3.3e+004; # Critical magnetic field for superconducting lead at 5 K, A/m\n",
"\n",
"#Calculation\n",
"# As H_cT = H_c0*(1-(T/T_c)^2), solving for H_c0\n",
"H_c0 = H_cT/(1-(T/T_c)**2); # Critical field for lead at 0 K, A/m \n",
"\n",
"#Result\n",
"print \"The critical magnetic field for lead at 0 K = %4.2e A/m\"%H_c0\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical magnetic field for lead at 0 K = 6.37e+04 A/m\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.7, Page 962"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"H_c0 = 2e+005; # Critical field for niobium at 0 K, A/m \n",
"H_cT = 1e+005; # Critical magnetic field for superconducting niobium at 5 K, A/m\n",
"T = 8; # Temperature at which lead loses its superconducting state, K\n",
"\n",
"#Calculation\n",
"# As H_cT = H_c0*(1-(T/T_c)^2), solving for T_c\n",
"T_c = T/(1-H_cT/H_c0)**(1./2);\n",
"\n",
"#Result\n",
"print \"The critical temperature for niobium = %6.3f K\"%T_c\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The critical temperature for niobium = 11.314 K\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|