1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 16: Crystal Physics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.1, Page 820"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"p = 1; q = 2; r = 3; # Coefficients of intercepts along three axes\n",
"\n",
"#Calculations\n",
"p_inv = 1./p; # Reciprocate the first coefficient\n",
"q_inv = 1./q; # Reciprocate the second coefficient\n",
"r_inv = 1./r; # Reciprocate the third coefficient\n",
"mul_fact = p*q*r; # Find l.c.m. of m,n and p\n",
"m1 = p_inv*mul_fact; # Clear the first fraction\n",
"m2 = q_inv*mul_fact; # Clear the second fraction\n",
"m3 = r_inv*mul_fact; # Clear the third fraction\n",
"\n",
"#Result\n",
"print \"The required miller indices are : (%d %d %d) \"%(m1,m2,m3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required miller indices are : (6 3 2) \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.2, Page 820"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"p = 2; q = 3; r = -4; # Coefficients of intercepts along three axes\n",
"\n",
"#Calculations\n",
"p_inv = 1./p; # Reciprocate the first coefficient\n",
"q_inv = 1./q; # Reciprocate the second coefficient\n",
"r_inv = 1./r; # Reciprocate the third coefficient\n",
"mul_fact = p*q*abs(r); # Find l.c.m. of m,n and p\n",
"m1 = p_inv*mul_fact; # Clear the first fraction\n",
"m2 = q_inv*mul_fact; # Clear the second fraction\n",
"m3 = r_inv*mul_fact; # Clear the third fraction\n",
"\n",
"#Result\n",
"print \"The miller indices of laticce plane are : (%d %d %d) \"%(m1,m2,m3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The miller indices of laticce plane are : (12 8 -6) \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.3, Page 821"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy\n",
"\n",
"#Variable declaration\n",
"p = 3; q = 4; r = numpy.inf; # Coefficients of intercepts along three axes\n",
"\n",
"#Calculations\n",
"p_inv = 1./p; # Reciprocate the first coefficient\n",
"q_inv = 1./q; # Reciprocate the second coefficient\n",
"r_inv = 1./r; # Reciprocate the third coefficient\n",
"mul_fact = p*q; # Find l.c.m. of m,n and p\n",
"m1 = p_inv*mul_fact; # Clear the first fraction\n",
"m2 = q_inv*mul_fact; # Clear the second fraction\n",
"m3 = r_inv*mul_fact; # Clear the third fraction\n",
"\n",
"#Result\n",
"print \"The miller indices of the given planes are : (%d %d %d) \"%(m1,m2,m3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The miller indices of the given planes are : (4 3 0) \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.4, Page 822 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"p = 1.2; # First coefficient of intercept along X-axis, angstrom\n",
"a = 1.2\n",
"b = 1.8\n",
"c = 2.0; # Lattice parameters along three axes, angstrom\n",
"h = 2.\n",
"k = 3.\n",
"l = 1.; # Miller indices of lattice plane\n",
"\n",
"#Calculations\n",
"# As p:q:r = a/h:b/k:c/l, solving for q and r\n",
"q = p*(b/k)/(a/h); # Second coefficient of intercept along X-axis, angstrom \n",
"r = p*(c/l)/(a/h); # Third coefficient of intercept along X-axis, angstrom \n",
"\n",
"#Result\n",
"print \"The lengths of the intercepts on Y and Z axes are %3.1f angstrom and %3.1f angstrom respectively\"%(q, r)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The lengths of the intercepts on Y and Z axes are 1.2 angstrom and 4.0 angstrom respectively\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.5, Page 822"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"M = 58.5; # Molecular weight of NaCl, g-mole\n",
"rho = 2.198e+03; # Density of Nacl, kg per metre cube\n",
"n = 4; # No. of atoms per unit cell for an fcc lattice of NaCl crystal\n",
"NA = 6.023e+26; # Avogadro's No., atoms/k-mol\n",
"\n",
"#Calculations\n",
"# Volume of the unit cell is given by\n",
"# a^3 = M*n/(N*d)\n",
"# Solving for a\n",
"a = (n*M/(rho*NA))**(1./3); # Lattice constant of unit cell of NaCl\n",
"\n",
"#Result\n",
"print \"Lattice constant for the NaCl crystal = %4.2f angstrom\"%(a/1e-010)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Lattice constant for the NaCl crystal = 5.61 angstrom\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.6, Page 823"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"M = 119; # Molecular weight of KBr, g-mole\n",
"rho = 2.7; # Density of KBr, g per cm-cube\n",
"n = 4; # No. of atoms per unit cell for an fcc lattice of KBr crystal\n",
"NA = 6.023e+23; # Avogadro's No., atoms/mol\n",
"\n",
"#Calculations\n",
"# Volume of the unit cell is given by\n",
"# a^3 = M*n/(N*d)\n",
"# Solving for a\n",
"a = (n*M/(rho*NA))**(1./3); # Lattice constant of unit cell of KBr\n",
"\n",
"#Result\n",
"print \"Lattice constant for the KBr crystal = %4.2f angstrom\"%(a/1e-008)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Lattice constant for the KBr crystal = 6.64 angstrom\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.7, Page 823"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"M = 63.5; # Molecular weight of Cu, g-mole\n",
"rho = 8.96; # Density of Cu, g per cm-cube\n",
"n = 4; # No. of atoms per unit cell for an fcc lattice of Cu \n",
"NA = 6.023e+23; # Avogadro's No., atoms/mol\n",
"\n",
"#Calculations\n",
"# Volume of the unit cell is given by\n",
"# a^3 = M*n/(N*d)\n",
"# Solving for a\n",
"a = (n*M/(rho*NA))**(1./3); # Lattice constant of unit cell of Cu\n",
"d = a/sqrt(2); # Distance between the two nearest Cu atoms, angstrom \n",
"\n",
"#Results\n",
"print \"Lattice constant for the Cu crystal = %4.2f angstrom\"%(a/1e-008)\n",
"print \"The distance between the two nearest Cu atoms = %4.2f angstrom\"%(d/1e-008)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Lattice constant for the Cu crystal = 3.61 angstrom\n",
"The distance between the two nearest Cu atoms = 2.55 angstrom\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.8, Page 824"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"a = 1; # For simplicity assume lattice parameter of cubic crystal to be unity, unit\n",
"# For (011) planes\n",
"h = 0; k = 1; l = 1; # Miller Indices for planes in a cubic crystal\n",
"d_011 = a/(h**2+k**2+l**2)**(1./2); # The interplanar spacing for cubic crystals, m\n",
"print \"The interplanar spacing between consecutive (011) planes = a/sqrt(%d)\"%(1/d_011**2)\n",
"\n",
"# For (101) planes\n",
"h = 1; k = 0; l = 1; # Miller Indices for planes in a cubic crystal\n",
"d_101 = a/(h**2+k**2+l**2)**(1./2); # The interplanar spacing for cubic crystals, m\n",
"print \"The interplanar spacing between consecutive (101) planes = a/sqrt(%d)\"%(1/d_101**2)\n",
"\n",
"# For (112) planes\n",
"h = 1; k = 1; l = 2; # Miller Indices for planes in a cubic crystal\n",
"d_112 = a/(h**2+k**2+l**2)**(1./2); # The interplanar spacing for cubic crystals, m\n",
"print \"The interplanar spacing between consecutive (112) planes = a/sqrt(%d)\"%(1/d_112**2) #incorrect answer in textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The interplanar spacing between consecutive (011) planes = a/sqrt(2)\n",
"The interplanar spacing between consecutive (101) planes = a/sqrt(2)\n",
"The interplanar spacing between consecutive (112) planes = a/sqrt(5)\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.9, Page 824"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"a = 4.2e-010; # Lattice parameter of cubic crystal, m\n",
"h = 3; k = 2; l = 1; # Miller Indices for planes in a cubic crystal\n",
"\n",
"#Calculations\n",
"d_321 = a/(h**2+k**2+l**2)**(1./2); # The interplanar spacing for cubic crystals, m\n",
"\n",
"#Result\n",
"print \"The interplanar spacing between consecutive (321) planes = %4.2f angstrom\"%(d_321/1e-010)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The interplanar spacing between consecutive (321) planes = 1.12 angstrom\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.10, Page 825"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"\n",
"#Variable declaration\n",
"a = 2.5\n",
"b = 2.5\n",
"c = 1.8; # Lattice parameter of tetragonal crystal, angstrom\n",
"h = 1\n",
"k = 1\n",
"l = 1; # Miller Indices for planes in a tetragonal crystal\n",
"\n",
"#Calculations\n",
"d_hkl = 1/sqrt((h/a)**2+(k/b)**2+(l/c)**2); # The interplanar spacing for tetragonal crystals, m\n",
"\n",
"#Result\n",
"print \"The interplanar spacing between consecutive (111) planes = %4.2f angstrom\"%d_hkl\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The interplanar spacing between consecutive (111) planes = 1.26 angstrom\n"
]
}
],
"prompt_number": 27
}
],
"metadata": {}
}
]
}
|