summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_13.ipynb
blob: 0622b3901130f6f7978bf4a02706d868e01c54ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 13: Dielectric Properties of Materials"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.1, Page 648"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "from scipy import integrate\n",
      "\n",
      "#Variable declaration\n",
      "q = 1e-006;   # Electric charge on either side of the dipole, C\n",
      "l = 2e-02;    # Dipole length, m\n",
      "p = q*l;      # Dipole moment for the pair of opposite charges, C-m\n",
      "E = 1e+005;   # External electric field, N/C\n",
      "theta = 90;   # Angle which the dipole makes with the external field, degrees\n",
      "\n",
      "#Calculations&Results\n",
      "tau = p*E*sin(theta);   # The maximum torque on dipole placed in external electric field, Nm\n",
      "print \"The maximum torque = %1.0e N-m\"%tau\n",
      "W = p*E*(cos(0)-cos(180*pi/180))\n",
      "#W = integrate('p*E*sin(thet)', 'thet', 0, pi);    # The work done in rotating the dipole direction = %1.0e J\", W\n",
      "print \"The work done in rotating the dipole direction = %1.0e J\"%W\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum torque = 2e-03 N-m\n",
        "The work done in rotating the dipole direction = 4e-03 J\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.2, Page 648"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "Q = 8e-019;   # Charge of the nucleus, C\n",
      "p = 3.2e-029;   # Electric dipole moment, C-m\n",
      "r = 1e-10;    # Distance of dipole relative to the nucleus, m\n",
      "k = 9e+9;   # Coulomb constant, N-meter-square/C-square\n",
      "theta = 0;   # Angle for radial direction, radian \n",
      "\n",
      "#Calculations&Results\n",
      "F = k*p*Q*sqrt(3*cos(theta**2)+1)/r**3;    # The force acting on the dipole in the radial direction, N\n",
      "print \"The force acting on the dipole in the radial direction = %3.1e N\"%F\n",
      "theta = pi/2;   # Angle for perpendicular direction, radian\n",
      "F = k*p*Q*sqrt(3*cos(theta)**2+1)/r**3;\n",
      "print \"The force acting on the dipole in the direction perpendicular to radial direction = %3.1e N\"%F\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force acting on the dipole in the radial direction = 4.6e-07 N\n",
        "The force acting on the dipole in the direction perpendicular to radial direction = 2.3e-07 N\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.3, Page 649"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "chi_e = 35.4e-12;   # Susceptability of the material, C-square/N-meter-square\n",
      "eps_0 = 8.85e-12;   # Electric permittivity in free space, C-squre/N-meter-square\n",
      "\n",
      "#Calculations&Results\n",
      "K = 1 + (chi_e/eps_0);\n",
      "print \"The dielectric constant = %d \"%K\n",
      "eps = (eps_0*K); \n",
      "print \"The electric permittivity  = %5.3e C-square/N-meter square \"%eps\n",
      "\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dielectric constant = 5 \n",
        "The electric permittivity  = 4.425e-11 C-square/N-meter square \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.4, Page 649"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "eps = 1.46e-10;   # Electric permittivity, C-square/n-meter-square\n",
      "eps_0 = 8.85e-12;   # Permittivity in free space, C-squre/N-meter-square\n",
      "\n",
      "#Calculations&Results\n",
      "K = (eps/eps_0);\n",
      "print \"The dielectric constant = %4.1f \"%K\n",
      "chi_e = eps_0*(K-1);   # Susceptability,in C-square/N-meter-square\n",
      "print \"The electric susceptability = %4.2e C-square/N-meter square \"%chi_e\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dielectric constant = 16.5 \n",
        "The electric susceptability = 1.37e-10 C-square/N-meter square \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.5, Page 650"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "K = 7.0;   # Dielectric constant of the slab\n",
      "d = 0.01;   # Distance between the two parallel plates, m\n",
      "V_0 = 100;   # Potential difference across the plates, V\n",
      "eps_0 = 8.85e-12;   # Electric permability of the free space, C-square/N-meter-square\n",
      "\n",
      "#Calculations&Results\n",
      "E_0 = V_0/d;   # Electric intensity in the absence of dielectric slab, V/m\n",
      "E = E_0/K;    # Electric intensity with dielectric slab introduced between the plates, V/m\n",
      "print \"The electric field intensity in the presence of the dielectric slab = %4.2e V/m \"%E\n",
      "D = (eps_0*K*E);    # Electric displacement, C-square/m-square\n",
      "print \"The electric displacement in the dielectric slab = %4.2e C-square/meter-square \"%D\n",
      "P = eps_0*(K-1)*E;    # Electric polarization in the dielectric slab, C-square/m-square\n",
      "print \"The electric polarization in the dielectric slab = %3.1e C-square/meter-square \"%P\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electric field intensity in the presence of the dielectric slab = 1.43e+03 V/m \n",
        "The electric displacement in the dielectric slab = 8.85e-08 C-square/meter-square \n",
        "The electric polarization in the dielectric slab = 7.6e-08 C-square/meter-square \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.6, Page 650"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "K = 1.000074;   # Dielectric constant of the He\n",
      "n = 2.69e+025;   # Atomic density of He, atoms/meter-cube\n",
      "eps_0 = 8.85e-012;   # Electric permability of the free space, C-square/N-meter-square\n",
      "E = 1;   # Electric field strength, V/m\n",
      "\n",
      "#Calculations\n",
      "p = (eps_0*(K-1)*E)/n;    # Dipole moment induced in He, C-m\n",
      "\n",
      "#Result\n",
      "print \"The dipole moment induced in each He atom = %4.2e C-m \"%p\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dipole moment induced in each He atom = 2.43e-41 C-m \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.7, Page 650"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "K = 1.000134;   # Dielectric constant of the neon\n",
      "n = 2.69e+25;   # Atomic density of argon,atoms/meter-cube\n",
      "eps_0 = 8.85e-12;   # Electric Permability in the free space, C-square/N-meter-square\n",
      "E = 90e+03;    # External electric field, V/m\n",
      "\n",
      "#Calculations\n",
      "p = eps_0*(K-1)*E/n;    # Dipole moment induced in each neon atom, C-m\n",
      "alpha = p/E;    # Atomic polarizability of neon gas, C-metre-square/V\n",
      "\n",
      "#Results\n",
      "print \"The induced dipole moment of noen atom = %4.2e C-m\"%p\n",
      "print \"The electronic polarizability of neon gas = %3.1e C-m-square/V \"%alpha\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The induced dipole moment of noen atom = 3.97e-36 C-m\n",
        "The electronic polarizability of neon gas = 4.4e-41 C-m-square/V \n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.8, Page 651"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "K = 1.0024;   # Dielectric constant of the argon\n",
      "n = 2.7e+25;   # Atomic density of argon,atoms/meter-cube\n",
      "eps_0 = 8.85e-12;   # Electric Permability in the free space, C-square/N-meter-square\n",
      "\n",
      "#Calculations\n",
      "alpha = eps_0*(K-1)/n;\n",
      "\n",
      "#Result\n",
      "print \"The electronic polarizability of argon atom = %4.1e C-m-square/V \"%alpha\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electronic polarizability of argon atom = 7.9e-40 C-m-square/V \n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.9, Page 651"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "K = 2.24;   # Dielectric constant \n",
      "eps_0 = 8.85e-12;   # Electric permability in the free space, C-square/N-meter-square\n",
      "rho = 1.6e+003;   # Density of CCl4, kg/meter-cube\n",
      "M = 156;   # Molecular weight of CCl4\n",
      "E = 1e+007;   # External electric field strength, V/m\n",
      "N_A = 6.02e+26;    # Avogadro's number, per kmol\n",
      "\n",
      "#Calculations\n",
      "rho_M = rho*N_A/M;     # Molecular density of CCl4\n",
      "p = eps_0*(K-1)*E/rho_M;    # Individual dipole moment of CCL4 molecule, C-m\n",
      "\n",
      "#Result\n",
      "print \"Individual dipole moment of CCL4 molecule = %4.2e C-m \"%p\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Individual dipole moment of CCL4 molecule = 1.78e-32 C-m \n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.10, Page 652"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "K = 1.0000684;   # Dielectric constant of He at 1 atm\n",
      "n = 2.7e+25;   # Density of He at 1 atm and 273 K, atoms/meter-cube\n",
      "\n",
      "#Calculations\n",
      "# The atomic polarizibility, alpha = eps_0*(K-1)/n \n",
      "# In terms of atomic radius, alpha = 4*%pi*eps_0*R^3 so, we have\n",
      "R = ((K-1)/(4*pi*n))**(1./3);    # Radius of He atom, m\n",
      "\n",
      "#Result\n",
      "print \"The atomic radius of He = %4.2e m \"%R\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The atomic radius of He = 5.86e-11 m \n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.11, Page 652"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "mu = 1.5;   # Optical index of refraction of NaCl crystal\n",
      "K = 5.6;   # Static dielectric constant of NaCl crystal\n",
      "\n",
      "#Calculations\n",
      "P_IP = (1-((mu**2-1)*(K+2))/((mu**2+2)*(K-1)))*100;\n",
      "\n",
      "#Result\n",
      "print \"The percentage of ionic polarizibility in NaCl crystal = %4.1f percent \"%P_IP\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The percentage of ionic polarizibility in NaCl crystal = 51.4 percent \n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.12, Page 653"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "K_B = 1.38e-23;   # Boltzmann constant, J/mol/K\n",
      "T = 300;   # Room temperature, K \n",
      "eps_0 = 8.85e-12;   # Electric permittivity of free space, F/m\n",
      "N_A = 6.0e+23;    # Avogadro's number\n",
      "\n",
      "#Calculations\n",
      "n2 = N_A*1000;     # Number of molecules of non-polar substance in 1000 cc volume\n",
      "p_0 = sqrt((9*K_B*T*eps_0*0.023)/n2);    # Dipole moment of polar molecules, C-m\n",
      "\n",
      "#Result\n",
      "print \"The dipole moment of polar molecules = %4.3e C-m\"%p_0\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dipole moment of polar molecules = 3.555e-30 C-m\n"
       ]
      }
     ],
     "prompt_number": 31
    }
   ],
   "metadata": {}
  }
 ]
}