summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_12.ipynb
blob: 832a6dfa11d43a077996f3ea21d0acde84b0c0b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12: Magnetic Properties of Materials"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.1, Page 603"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "H = 5e+3;   # Coercivity of a bar magnet, A/m\n",
      "L = 0.1;   # Length of the solenoid, m\n",
      "N = 50;   # Turns in solenoid\n",
      "n = 500;   # Turns/m\n",
      "\n",
      "#Calculations\n",
      "# Using the relation\n",
      "I = H/n;   # where I is the current through the solenoid\n",
      "\n",
      "#Result\n",
      "print \"The current through the solenoid is = %2d A\"%I\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current through the solenoid is = 10 A\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2, Page 603"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "n = 500;   # Number of turns wound per metre on the solenoid\n",
      "i = 0.5;   # Current through the solenoid, A\n",
      "V = 1e-03;   # Volume of iron rod, per metre cube\n",
      "mu_r = 1200;    # Relative permeability of the iron\n",
      "\n",
      "#Calculations&Results\n",
      "H = n*i;    # Magnetic intensity inside solenoid, ampere-turn per metre\n",
      "# As B = mu_o * (H + I) => I = B/mu_o -  H \n",
      "# But B = mu_o * mu_r * H and solving for I \n",
      "I = (mu_r - 1) * H;\n",
      "print \"The Intensity of magnetisation inside the solenoid, I = %5.3e A/m\"%I\n",
      "M = I * V;    # Magnetic moment of the rod, ampere metre square \n",
      "print \"The magnetic moment of the rod, M = %3d ampere metre square\"%M\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Intensity of magnetisation inside the solenoid, I = 2.998e+05 A/m\n",
        "The magnetic moment of the rod, M = 299 ampere metre square\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3, Page 604"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "n = 300;   # Number of turns wound per metre on the solenoid\n",
      "i = 0.5;   # Current through the solenoid, A\n",
      "V = 1e-03;   # Volume of iron rod, per metre cube\n",
      "mu_r = 100;    # Relative permeability of the iron\n",
      "\n",
      "#Calculations&Results\n",
      "H = n*i;    # Magnetic intensity inside solenoid, ampere-turn per metre\n",
      "# As, I = (B-mu_o* H)/mu_o\n",
      "#But, B= mu * H = mu_r * mu_o * H and I = (mu_r-1)* H\n",
      "I = (mu_r-1)*n*i; \n",
      "print \"The Intensity of magnetisation inside the solenoid, I = %5.3e A/m\"%I\n",
      "l = 0.2;   #length of the rod,m\n",
      "r = 5e-3;   #radius of the rod,m\n",
      "V = 1.57e-5;   #V=%pi*r^2*l where the volume of the rod having radius r and length,m\n",
      "M = I * V ;    # Magnetic moment of the rod, ampere metre square\n",
      "print \"The magnetic moment of the rod, M = %5.3f ampere metre square\"%M\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Intensity of magnetisation inside the solenoid, I = 1.485e+04 A/m\n",
        "The magnetic moment of the rod, M = 0.233 ampere metre square\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.4, Page 605"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "B = 0.0044;   # Magnetic flux density, weber/meter square\n",
      "mu_o = 4*pi*1e-07;   # Relative permeability of the material, henery/m \n",
      "I = 3300;   # Magnetization of a magnetic material, A/m\n",
      "\n",
      "#Calculations&Results\n",
      "#B = mu_o*(I+H), solving for H  \n",
      "H = (B/mu_o)- I;   # Magnetizing force ,A/m\n",
      "print \"The magnetic intensity,H = %3d A/m\"%H\n",
      "# Relation between intensity of magnetization and relative permeability \n",
      "mu_r = (I/H)+1;   #substitute the value of I and H \n",
      "print \"The relative permeability, mu_r = %5.2f\"%mu_r\n",
      "\n",
      "#Incorrect answers in the textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetic intensity,H = 201 A/m\n",
        "The relative permeability, mu_r = 17.38\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.5, Page 605"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu_o = 4*pi*1e-07;   # Magnetic permeability of the free space, henery/m\n",
      "mu_r = 600;\n",
      "mu = mu_o*mu_r;     # Magnetic permeability of the medium, henery/m\n",
      "n = 500;   # Turns in a wire\n",
      "i = 0.3;   # Current flows through a ring,amp\n",
      "r = 12e-02/2;   # Mean radius of a ring, m\n",
      "\n",
      "#Calculations&Results\n",
      "B = mu_o*mu_r*n*i/(2*pi*r);\n",
      "print \"The magnetic flux density = %2.1f weber/meter-square\"%B\n",
      "H = B/mu;   # Magnetic intensity, ampere-turns/m\n",
      "print \"The magnetic intensity = %5.1f ampere-turns/m\"%H\n",
      "mui = B -mu_o\n",
      "per = mui/i*100\n",
      "print \"The percentage magnetic flux density due to electronic loop currents = \",per,\"%\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetic flux density = 0.3 weber/meter-square\n",
        "The magnetic intensity = 397.9 ampere-turns/m\n",
        "The percentage magnetic flux density due to electronic loop currents =  99.999581121 %\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.6, Page 606"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "M_i = 4.5;   # Intial value of total dipole moment of the sample\n",
      "H_i = 0.84;   # External magnetic field, tesla\n",
      "T_i = 4.2;   # Cooling temerature of the sample, K\n",
      "H_f = 0.98;   # External magnetic field, tesla\n",
      "T_f = 2.8;   # Cooling temerature of the sample, K\n",
      "\n",
      "#Calculations\n",
      "# According to the curie's law, Mf/Mi = (Hf/Hi)*(Ti/Tf)\n",
      "M_f = M_i*H_f/H_i*T_i/T_f;\n",
      "\n",
      "#Result\n",
      "print \"The total dipole moment of the sample = %5.3f joule/tesla\"%M_f\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total dipole moment of the sample = 7.875 joule/tesla\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.7, Page 606"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "mu_o = 4*pi*1e-07;   # Magnetic permeability of free space, henry/m\n",
      "n = 1e+29;   # Number density of atoms of iron, per metre cube \n",
      "p_m = 1.8e-23;   # Magnetic moment of each atom, ampere-metre square  \n",
      "k_B = 1.38e-23;   # Boltzmann constant, J/K\n",
      "B = 0.1;    # Magnetic flux density, weber per metre square\n",
      "T = 300;   # Absolute room temperature, K\n",
      "l = 10e-02; # Length of the iron bar, m\n",
      "a = 1e-04;  # Area of cross-section of the iron bar, metre square\n",
      "\n",
      "#Calculations&Results\n",
      "V = l*a;    # Voluem of the iron bar, metre cube\n",
      "chi = n*p_m**2*mu_o/(3*k_B*T);\n",
      "print \"The paramagnetic susceptibility of a material = %5.3e\"%chi\n",
      "pm_mean = p_m**2*B/(3*k_B*T); # Mean dipole moment of an iron atom, ampere metre-square\n",
      "P_m = n*pm_mean;  # Dipole moment of the bar, ampere metre-square\n",
      "I = n*p_m;  # Magnetization of the bar in one domain, ampere/metre\n",
      "M = I*V;    # Magnetic moment of the bar, ampere metre-square\n",
      "print \"The dipole moment of the bar = %5.3e ampere metre-square\"%P_m\n",
      "print \"The magnetization of the bar in one domain = %3.1e ampere/metre\"%I\n",
      "print \"The magnetic moment of the bar = %2d ampere metre-square\"%M\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The paramagnetic susceptibility of a material = 3.278e-03\n",
        "The dipole moment of the bar = 2.609e+02 ampere metre-square\n",
        "The magnetization of the bar in one domain = 1.8e+06 ampere/metre\n",
        "The magnetic moment of the bar = 18 ampere metre-square\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.8, Page 607"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "A = 500;   # Area of the B-H loop, joule per metre cube\n",
      "n = 50;   # Total number of cycles, Hz\n",
      "m = 9;   # Mass of the core, kg\n",
      "d = 7.5e+3;   # Density of the core, kg/metre cube\n",
      "t = 3600;   # Time during which the energy loss takes place, s\n",
      "\n",
      "#Calculations\n",
      "V = m/d;   # Volume of the core, metre cube\n",
      "E = n*V*A*t;   # Hystersis loss of energy per hour, joule\n",
      "\n",
      "#Result\n",
      "print \"The hystersis loss per hour = %5.2eJ\"%E\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The hystersis loss per hour = 1.08e+05J\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.9, Page 607"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "n = 50;   # Total number of cycles per sec, Hz\n",
      "V = 1e-03;   # Volume of the specimen, metre cube\n",
      "t = 1;   # Time during which the loss occurs, s\n",
      "A = 0.25e+03;   # Area of B-H loop, joule per metre cube\n",
      "\n",
      "#Calculations\n",
      "E = n*V*A*t;    # Energy loss due to hysteresis, J/s\n",
      "\n",
      "#Result\n",
      "print \"The hystersis loss = %4.1f J/s\"%E\n",
      "#incorrect answer in the textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The hystersis loss = 12.5 J/s\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.10, Page 608"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "e = 1.6e-19;   # Charge on anlectron, C\n",
      "m = 9.1e-31;   # Mass of the electron, kg\n",
      "r = 5.1e-11;   # Radius of the electronic orbit, m\n",
      "B = 2.0;   # Applied magnetic field, weber per metre-square\n",
      "\n",
      "#Calculations\n",
      "delta_pm = e**2*r**2*B/(4*m);\n",
      "\n",
      "#Result\n",
      "print \"The change in the magnetic dipole moment of the electron = %3.1e A-metre square\"%delta_pm\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The change in the magnetic dipole moment of the electron = 3.7e-29 A-metre square\n"
       ]
      }
     ],
     "prompt_number": 21
    }
   ],
   "metadata": {}
  }
 ]
}