summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_10.ipynb
blob: 6c1f1d6b875ba145bf6b40c9b981520c692a943f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10: Electrostatics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1, Page 507"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "m = 4e-013;  # Mass of the particle, kg\n",
      "q = 2.4e-019;  # Charge on particle, C\n",
      "d = 2e-002;  # Distance between the two horizontally charged plates, m\n",
      "g = 9.8;  #`Acceleration due to gravity, m/sec-square\n",
      "\n",
      "#Calculations\n",
      "E = (m*g)/q ;  # Electric field strength, N/C\n",
      "V = E*d;     # Potential difference between the two charged horizontal plates, V\n",
      "\n",
      "#Result\n",
      "print \"The potential difference between the two horizontally charged plates = %3.1e V\"%V\n",
      "#Incorrect answer in textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The potential difference between the two horizontally charged plates = 3.3e+05 V\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2, Page 507"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable Declaration\n",
      "q1 = 1e-009;    # Charge at first corner, C\n",
      "q2 = 2e-009;    # Charge at second corner, C\n",
      "q3 = 3e-009;    # Charge at third corner, C\n",
      "d = 1.;  # Side of the equilateral triangle, m\n",
      "theta = 30;  # Angle at which line joining the observation point to the source charge makes with the side, degrees\n",
      "\n",
      "#Calculations\n",
      "r = (d/2)/cos(theta*pi/180);  # Distance of observation point from the charges, m\n",
      "#since,1/4*%pi*%eps = 9e+009;\n",
      "V = (q1+q2+q3)*(9e+009)/r;  # Elecric potential, V\n",
      "\n",
      "#Result\n",
      "print \"The electric potential at the point equidistant from the three corners of the triangle = %4.1f V\"%V\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electric potential at the point equidistant from the three corners of the triangle = 93.5 V\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3, Page 508"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable Declaration\n",
      "q = 2e-008;    \n",
      "q1 = q;        # Charge at first corner, C\n",
      "q2 = -2*q;     # Charge at second corner, C\n",
      "q3 = 3*q;      # Charge at third corner, C\n",
      "q4 = 2*q;      # Charge at fourth corner, C\n",
      "d = 1;      # Side of the square, m\n",
      "\n",
      "#Calculations\n",
      "r = round(d*sin(45*pi/180),2);  # Distance of centre of the square from each corner, m\n",
      "V = (q1+q2+q3+q4)*(9e+009)/r;  # Elecric potential at the centre of the square, V \n",
      "\n",
      "#Result\n",
      "print \"The electric potential at the centre of the square = %4d V\"%V\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electric potential at the centre of the square = 1014 V\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.6, Page 511"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "V = 60;  # Electric potential of smaller drop, volt\n",
      "r = 1;  # For simplcity assume radius of each small drop to be unity, unit\n",
      "q = 1;  # For simplicity assume charge on smaller drop to be unity, C\n",
      "k = 1;  # For simplicity assume Coulomb's constant to be unity, unit\n",
      "\n",
      "#Calculations\n",
      "R = 2**(1./3)*r;    # Radius of bigger drop, unit\n",
      "Q = 2*q;  # Charge on bigger drop, C\n",
      "V_prime = k*Q/R*V;  # Electric potential of bigger drop, volt\n",
      "\n",
      "#Result\n",
      "print \"The electric potential of new drop = %4.1f V\"%V_prime\n",
      "#Incorrect answer in the textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electric potential of new drop = 95.2 V\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.7, Page 512"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "m = 9.1e-031;  # Mass of the electron, kg\n",
      "e = 1.6e-019;  # Charge on an electron, C\n",
      "g = 9.8;       # Acceleration due to gravity, m/sec-square\n",
      "\n",
      "#Calculations\n",
      "# Electric force, F = e*E, where F = m*g or e*E = m*g\n",
      "E = m*g/e;    # Electric field which would balance the weight of an electron placed in it, N/C\n",
      "\n",
      "#Result\n",
      "print \"The required electric field strength = %3.1e N/C\"%E\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required electric field strength = 5.6e-11 N/C\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.8, Page 512"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declaration\n",
      "q1 = 8e-007;  # First Charge, C\n",
      "q2 = -8e-007;  # Second Charge, C\n",
      "r = 15e-002;  # Distance between the two charges, m\n",
      "k = 9e+009; # Coulomb's constant, N-metre-square/coulomb-square\n",
      "\n",
      "#Calculations&#Results\n",
      "E1 = k*q1/r**2;  # Electric field strength due to charge 8e-007 C\n",
      "print \"The electric field strength at midpoint = %3.1e N/C\"%E1\n",
      "E2 = abs(k*q2/r**2);  # Electric field strength -8e-007 C \n",
      "print \"The electric field strength at midpoint = %3.1e N/C\"%E2\n",
      "# Total electric field strength at the mid-point is\n",
      "E = E1+E2;      # Net electric field at mid point, N/C\n",
      "print \"The net electric field strength at midpoint = %3.1e N/C\"%E\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electric field strength at midpoint = 3.2e+05 N/C\n",
        "The electric field strength at midpoint = 3.2e+05 N/C\n",
        "The net electric field strength at midpoint = 6.4e+05 N/C\n"
       ]
      }
     ],
     "prompt_number": 21
    }
   ],
   "metadata": {}
  }
 ]
}