summaryrefslogtreecommitdiff
path: root/Applied_Physics/Chapter_10_Superconductivity.ipynb
blob: 7b7470a8fed8ab96a0b29476316dc82a6a90381a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
{
 "metadata": {
  "name": "",
  "signature": "sha256:03ee5374207ea96e9a4f31e16f771d187a11f07daf287d94fc54e352b5db8bff"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10:Superconductivity"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1 , Page no:313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "Tc=7.2; #in K (critical temperature)\n",
      "T=5; #in K (given temperature)\n",
      "H0=6.5E3; #in A/m (critical magnetic field at 0K)\n",
      "\n",
      "#calculate\n",
      "Hc=H0*(1-(T/Tc)**2); #calculation of magnitude of critical magnetic field\n",
      "\n",
      "#result\n",
      "print\"The magnitude of critical magnetic field is Hc=\",round(Hc,2),\"A/m\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnitude of critical magnetic field is Hc= 3365.35 A/m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2 , Page no:313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "r=0.02; #in m (radius of ring)\n",
      "Hc=2E3; #in A/m (critical magnetic field at 5K)\n",
      "pi=3.14; #value of pi used in the solutiion\n",
      "\n",
      "#calculate\n",
      "Ic=2*pi*r*Hc; #calculation of critical current value\n",
      "\n",
      "#result\n",
      "print\"The critical current value is Ic=\",Ic,\"A\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The critical current value is Ic= 251.2 A\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3 , Page no:313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "M1=199.5; #in amu (isotropic mass at 5K)\n",
      "T1=5; #in K (first critical temperature)\n",
      "T2=5.1; #in K (second critical temperature)\n",
      "#calculate\n",
      "#since Tc=C*(1/sqrt(M)\n",
      "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n",
      "#therefore we have M2=(T1/T2)^2*M1\n",
      "M2=(T1/T2)**2*M1; #calculation of isotropic mass at 5.1K\n",
      "\n",
      "#result\n",
      "print\"The isotropic mass at 5.1K is M2=\",round(M2,3),\"a.m.u.\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The isotropic mass at 5.1K is M2= 191.753 a.m.u.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4 , Page no:314"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "T=6; #in K (given temperature)\n",
      "Hc=5E3; #in A/m (critical magnetic field at 5K)\n",
      "H0=2E4; #in A/m (critical magnetic field at 0K)\n",
      "\n",
      "#calculate\n",
      "#since Hc=H0*(1-(T/Tc)^2)\n",
      "#therefor we have Tc=T/sqrt(1-(Hc/H)^2)\n",
      "Tc=T/math.sqrt(1-(Hc/H0)); #calculation of transition temperature\n",
      "\n",
      "#result\n",
      "print\"The transition temperature is Tc=\",round(Tc,3),\"K\";\n",
      "print \"NOTE: The answer in the textbook is wrong\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The transition temperature is Tc= 6.928 K\n",
        "NOTE: The answer in the textbook is wrong\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.5 , Page no:314"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "T=5; #in K (given temperature)\n",
      "d=3; #in mm (diameter of the wire)\n",
      "Tc=8; #in K (critical temperature for Pb)\n",
      "H0=5E4; #in A/m (critical magnetic field at 0K)\n",
      "pi=3.14; #value of pi used in the solution\n",
      "\n",
      "#calculate\n",
      "Hc=H0*(1-(T/Tc)**2); #calculation of critical magnetic field at 5K\n",
      "r=(d*1E-3)/2; #calculation of radius in m\n",
      "Ic=2*pi*r*Hc; #calculation of critical current at 5K\n",
      "\n",
      "#result\n",
      "print\"The critical magnetic field at 5K is Hc=\",Hc,\"A/m\";\n",
      "print\"The critical current at 5K is Ic=\",Ic,\"A\";\n",
      "print \"   (roundoff error)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The critical magnetic field at 5K is Hc= 30468.75 A/m\n",
        "The critical current at 5K is Ic= 287.015625 A\n",
        "   (roundoff error)\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.6 , Page no:314"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "V=8.50; #in micro V (voltage across Josephson junction )\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "h=6.626E-34; #in J/s (Planck\u2019s constant)\n",
      "\n",
      "#calculate\n",
      "V=V*1E-6; #changing unit from V to microVolt\n",
      "v1=2*e*V/h; #calculation of frequency of EM waves\n",
      "\n",
      "#result\n",
      "print\"The frequency of EM waves is v=\",v1,\"Hz\";\n",
      "print \"NOTE: The answer in the textbook is wrong\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The frequency of EM waves is v= 4105040748.57 Hz\n",
        "NOTE: The answer in the textbook is wrong\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.7 , Page no:315"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "M1=200.59; #in amu (average atomic mass  at 4.153K)\n",
      "Tc1=4.153; #in K (first critical temperature)\n",
      "M2=204; #in amu (average atomic mass of isotopes)\n",
      "\n",
      "#calculate\n",
      "#since Tc=C*(1/sqrt(M)\n",
      "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n",
      "#therefore we have Tc2=Tc1*sqrt(M1/M2)\n",
      "Tc2=Tc1*math.sqrt(M1/M2); #calculation of transition temperature of the isotopes\n",
      "\n",
      "#result\n",
      "print\"The transition temperature of the isotopes is  Tc2=\",round(Tc2,3),\"K\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The transition temperature of the isotopes is  Tc2= 4.118 K\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}