1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
{
"metadata": {
"name": "",
"signature": "sha256:eb4f284d8d12c103b674cc454947abe9c7a1a76e2d11836f2841ba55d4adeef7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9:Semiconductors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2 , Page no:272"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"Eg=0.67; #in eV (Energy band gap)\n",
"k=1.38E-23; #in J/K (Boltzmann\u2019s constant)\n",
"T1=298; #in K (room temperature)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"K=10; #ratio of number of electrons at different temperature\n",
"\n",
"#calculate\n",
"Eg=Eg*e; #changing unit from eV to Joule\n",
"#since ne=Ke*exp(-Eg/(2*k*T))\n",
"#and ne/ne1=exp(-Eg/(2*k*T))/exp(-Eg/(2*k*T1)) and ne/ne1=K=10\n",
"#therefore we have 10=exp(-Eg/(2*k*T))/exp(-Eg/(2*k*T1))\n",
"#re-arranging the equation for T, we get T2=1/((1/T1)-((2*k*log(10))/Eg))\n",
"T=1/((1/T1)-((2*k*math.log(10))/Eg)); #calculation of the temperature\n",
"\n",
"#result\n",
"print\"The temperature at which number of electrons in the conduction band of a semiconductor increases by a factor of 10 is T=\",round(T),\"K (roundoff error)\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature at which number of electrons in the conduction band of a semiconductor increases by a factor of 10 is T= 362.0 K (roundoff error)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3 , Page no:272"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ni=2.5E13; #in /cm^3 (intrinsic carrier density)\n",
"ue=3900; #in cm^2/(V-s) (electron mobilities)\n",
"uh=1900; #in cm^2/(V-s) (hole mobilities)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"l=1; #in cm (lenght of the box)\n",
"b=1;h=1; #in mm (dimensions of germanium rod )\n",
"\n",
"#calculate\n",
"ni=ni*1E6; #changing unit from 1/cm^3 to 1/m^3\n",
"ue=ue*1E-4; #changing unit from cm^2 to m^2\n",
"uh=uh*1E-4; #changing unit from cm^2 to m^2\n",
"sigma=ni*e*(ue+uh); #calculation of conductivity\n",
"rho=1/sigma; #calculation of resistivity\n",
"l=l*1E-2; #changing unit from mm to m for length\n",
"A=(b*1E-3)*(h*1E-3); #changing unit from mm to m for width and height and calculation of cross-sectional area\n",
"R=rho*l/A; #calculation of resistance\n",
"\n",
"#result\n",
"print\"The resistance of intrinsic germanium is R=\",R,\"ohm\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resistance of intrinsic germanium is R= 4310.34482759 ohm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.4 , Page no:273"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ne=2.5E19; #in /m^3 (electron density)\n",
"nh=2.5E19; #in /m^3 (hole density)\n",
"ue=0.36; #in m^2/(V-s) (electron mobilities)\n",
"uh=0.17; #in m^2/(V-s) (hole mobilities)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"#since ne=nh=ni, therefore we have \n",
"ni=nh;\n",
"sigma=ni*e*(ue+uh); #calculation of conductivity\n",
"rho=1/sigma; #calculation of resistivity\n",
"\n",
"#result\n",
"print\"The conductivity of germanium is =\",round(sigma,2),\"/ohm-m\";\n",
"print\"The resistivity of germanium is =\",round(rho,2),\"ohm-m\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The conductivity of germanium is = 2.12 /ohm-m\n",
"The resistivity of germanium is = 0.47 ohm-m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.5 , Page no:273"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ni=1.5E16; #in /m^3 (intrinsic carrier density)\n",
"ue=0.135; #in m^2/(V-s) (electron mobilities)\n",
"uh=0.048; #in m^2/(V-s) (hole mobilities)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"ND=1E23; #in atom/m^3 (doping concentration)\n",
"\n",
"#calculate\n",
"sigma_i=ni*e*(ue+uh); #calculation of intrinsic conductivity\n",
"sigma=ND*ue*e; #calculation of conductivity after doping\n",
"rho=ni**2/ND; #calculation of equilibrium hole concentration\n",
"\n",
"#result\n",
"print\"The intrinsic conductivity for silicon is =\",sigma_i,\"S\";\n",
"print\"The conductivity after doping with phosphorus atoms is =\",sigma,\"S\";\n",
"print\"The equilibrium hole concentration is =\",rho,\"/m^3\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The intrinsic conductivity for silicon is = 0.0004392 S\n",
"The conductivity after doping with phosphorus atoms is = 2160.0 S\n",
"The equilibrium hole concentration is = 2250000000.0 /m^3\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.6 , Page no:274"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ni=1.5E16; #in /m^3 (intrinsic carrier density)\n",
"ue=0.13; #in m^2/(V-s) (electron mobilities)\n",
"uh=0.05; #in m^2/(V-s) (hole mobilities)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"ne=5E20; #in /m^3 (concentration of donor type impurity)\n",
"nh=5E20; #in /m^3 (concentration of acceptor type impurity)\n",
"\n",
"#calculate\n",
"#part-i\n",
"sigma=ni*e*(ue+uh); #calculation of intrinsic conductivity\n",
"#part-ii\n",
"#since 1 donor atom is in 1E8 Si atoms, hence holes concentration can be neglected\n",
"sigma1=ne*e*ue; #calculation of conductivity after doping with donor type impurity\n",
"#part-iii\n",
"#since 1 acceptor atom is in 1E8 Si atoms, hence electron concentration can be neglected\n",
"sigma2=nh*e*uh; #calculation of conductivity after doping with acceptor type impurity\n",
"\n",
"#result\n",
"print\"The intrinsic conductivity for silicon is =\",sigma,\"(ohm-m)^-1\";\n",
"print\"The conductivity after doping with donor type impurity is =\",sigma1,\"(ohm-m)^-1\";\n",
"print\"The conductivity after doping with acceptor type impurity is =\",sigma2,\"(ohm-m)^-1\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The intrinsic conductivity for silicon is = 0.000432 (ohm-m)^-1\n",
"The conductivity after doping with donor type impurity is = 10.4 (ohm-m)^-1\n",
"The conductivity after doping with acceptor type impurity is = 4.0 (ohm-m)^-1\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.7 , Page no:274"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ni=1E20; #in /m^3 (intrinsic carrier density)\n",
"ND=1E21; #in /m^3 (donor impurity concentration)\n",
"\n",
"#calculate\n",
"nh=ni**2/ND; #calculation of density of hole carriers at room temperature\n",
"\n",
"#result\n",
"print\"The density of hole carriers at room temperature is nh=\",nh,\"/m^3\";\n",
"#Note: answer in the book is wrong due to printing mistake"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The density of hole carriers at room temperature is nh= 1e+19 /m^3\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.8 , Page no:275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"M=72.6; #atomic mass of germanium\n",
"P=5400; #in Kg/m^3 (density)\n",
"ue=0.4; #in m^2/V-s (mobility of electrons)\n",
"uh=0.2; #in m^2/V-s (mobility of holes)\n",
"Eg=0.7; #in eV (Band gap)\n",
"m=9.1E-31; #in Kg (mass of electron)\n",
"k=1.38E-23; #in J/K (Boltzmann\u2019s constant)\n",
"T=300; #in K (temperature)\n",
"h=6.63E-34; #in J/s (Planck\u2019s constant)\n",
"pi=3.14; #value of pi used in the solution\n",
"e=1.6E-19; #in C(charge of electron)\n",
"\n",
"#calculate\n",
"Eg=Eg*e; #changing unit from eV to J\n",
"ni=2*(2*pi*m*k*T/h**2)**(3/2)*math.exp(-Eg/(2*k*T));\n",
"sigma=ni*e*(ue+uh);\n",
"\n",
"#result\n",
"print\"The intrinsic carrier density for germanium at 300K is ni=\",ni,\"/m^3\";\n",
"print\"The conductivity of germanium is=\",round(sigma,3),\"(ohm-m)^-1\";\n",
"print \"NOTE: The answer in the textbook is wrong\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The intrinsic carrier density for germanium at 300K is ni= 3.33408559508e+19 /m^3\n",
"The conductivity of germanium is= 3.201 (ohm-m)^-1\n",
"NOTE: The answer in the textbook is wrong\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.9 , Page no:275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"rho1=4.5; #in ohm-m (resistivity at 20 degree Celcius)\n",
"rho2=2.0; #in ohm-m (resistivity at 32 degree Celcius)\n",
"k=1.38E-23; #in J/K (Boltzmann\u2019s constant)\n",
"T1=20; T2=32; #in degree Celcius (two temperatures)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"T1=T1+273; #changing unit from degree Celius to K\n",
"T2=T2+273; #changing unit from degree Celius to K\n",
"#since sigma=e*u*C*T^(3/2)*exp(-Eg/(2*k*T))\n",
"#therefore sigma1/sigma2=(T1/T2)^3/2*exp((-Eg/(2*k)*((1/T1)-(1/T2))\n",
"#and sigma=1/rho \n",
"#therefore we have rho2/rho1=(T1/T2)^3/2*exp((-Eg/(2*k)*((1/T1)-(1/T2))\n",
"#re-arranging above equation for Eg, we get Eg=(2*k/((1/T1)-(1/T2)))*((3/2)*log(T1/T2)-log(rho2/rho1))\n",
"Eg=(2*k/((1/T1)-(1/T2)))*((3/2)*math.log(T1/T2)-math.log(rho2/rho1));\n",
"Eg1=Eg/e;#changing unit from J to eV\n",
"\n",
"#result\n",
"print\"The energy band gap is Eg=\",Eg,\"J\";\n",
"print\"\\t\\t\\t =\",round(Eg1,3),\"eV\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The energy band gap is Eg= 1.54302914521e-19 J\n",
"\t\t\t = 0.964 eV\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.10 , Page no:276"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"rho=2300; #in ohm-m (resistivity of pure silicon)\n",
"ue=0.135; #in m^2/V-s (mobility of electron)\n",
"uh=0.048; #in m^2/V-s (mobility of electron)\n",
"Nd=1E19; #in /m^3 (doping concentration)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"#since sigma=ni*e*(ue+uh) and sigma=1/rho\n",
"#therefore ni=1/(rho*e*(ue+uh))\n",
"ni=1/(rho*e*(ue+uh)); #calculation of intrinsic concentration\n",
"ne=Nd; #calculation of electron concentration\n",
"nh=ni**2/Nd; #calculation of hole concentration\n",
"sigma=ne*ue*e+nh*uh*e; #calculation of conductivity\n",
"rho=1/sigma; #calculation of resistivity\n",
"\n",
"#result\n",
"print\"The electron concentration is ne=\",ne,\"/m^3\";\n",
"print\"The hole concentration is nh=\",nh,\"/m^3\";\n",
"print\"The resistivity of the specimen is =\",round(rho,3),\"ohm-m\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electron concentration is ne= 1e+19 /m^3\n",
"The hole concentration is nh= 2.20496745228e+13 /m^3\n",
"The resistivity of the specimen is = 4.63 ohm-m\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.11 , Page no:276"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"uh=1900; #in cm^2/V-s (mobility of electron)\n",
"Na=2E17; #in /m^3 (acceptor doping concentration)\n",
"e=1.6E-19; #in C(charge of electron)\n",
"\n",
"#calculate\n",
"uh=uh*1E-4; #changing unit from cm^2/V-s to m^2/V-s\n",
"Na=Na*1E6; #changing unit from 1/cm^3 to 1/m^3\n",
"nh=Na; #hole concentration \n",
"#since sigma=ne*ue*e+nh*uh*e and nh>>ne\n",
"#therefore sigma=nh*uh*e\n",
"sigma=nh*uh*e; #calculation of conductivity\n",
"\n",
"#result\n",
"print\"The conductivity of p-type Ge crystal is =\",sigma,\"/ohm-m (roundoff error)\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The conductivity of p-type Ge crystal is = 6080.0 /ohm-m (roundoff error)\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.12 , Page no:277"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ue=0.19; #in m^2/V-s (mobility of electron)\n",
"T=300; #in K (temperature)\n",
"k=1.38E-23; #in J/K (Boltzmann\u2019s constant)\n",
"e=1.6E-19; #in C(charge of electron)\n",
"\n",
"#calculate\n",
"Dn=ue*k*T/e; #calculation of diffusion co-efficient\n",
"\n",
"#result\n",
"print\"The diffusion co-efficient of electron in silicon is Dn=\",Dn,\"m^2/s\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The diffusion co-efficient of electron in silicon is Dn= 0.00491625 m^2/s\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.13 , Page no:277"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"Eg=0.4; #in eV (Band gap of semiconductor)\n",
"k=1.38E-23; #in J/K (Boltzmann\u2019s constant)\n",
"T1=0; #in degree Celcius (first temperature)\n",
"T2=50; #in degree Celcius (second temperature)\n",
"T3=100; #in degree Celcius (third temperature)\n",
"e=1.602E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"T1=T1+273; #changing temperature form Celcius to Kelvin\n",
"T2=T2+273; #changing temperature form Celcius to Kelvin\n",
"T3=T3+273; #changing temperature form Celcius to Kelvin\n",
"Eg=Eg*e; #changing unit from eV to Joule\n",
"#Using F_E=1/(1+exp(Eg/2*k*T))\n",
"F_E1=1/(1+math.exp(Eg/(2*k*T1))); #calculation of probability of occupation of lowest level at 0 degree Celcius\n",
"F_E2=1/(1+math.exp(Eg/(2*k*T2))); #calculation of probability of occupation of lowest level at 50 degree Celcius\n",
"F_E3=1/(1+math.exp(Eg/(2*k*T3))); #calculation of probability of occupation of lowest level at 100 degree Celcius\n",
"\n",
"#result\n",
"print\"The probability of occupation of lowest level in conduction band is\";\n",
"print\"\\t at 0 degree Celcius, F_E=\",F_E1,\"eV\";\n",
"print\"\\t at 50 degree Celcius, F_E=\",F_E2,\"eV\";\n",
"print\"\\t at 100 degree Celcius, F_E=\",F_E3,\"eV\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The probability of occupation of lowest level in conduction band is\n",
"\t at 0 degree Celcius, F_E= 0.000202505914236 eV\n",
"\t at 50 degree Celcius, F_E= 0.000754992968827 eV\n",
"\t at 100 degree Celcius, F_E= 0.00197639649915 eV\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.14 , Page no:278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"Eg=1.2; #in eV (Energy band gap)\n",
"k=1.38E-23; #in J/K (Boltzmann\u2019s constant)\n",
"T1=600; T2=300; #in K (two temperatures)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"Eg=Eg*e; #changing unit from eV to Joule\n",
"#since sigma is proportional to exp(-Eg/(2*k*T))\n",
"#therefore ratio=sigma1/sigma2=exp(-Eg/(2*k*((1/T1)-(1/T2))));\n",
"ratio= math.exp((-Eg/(2*k))*((1/T1)-(1/T2))); #calculation of ratio of conductivity at 600K and at 300K\n",
"\n",
"#result\n",
"print\"The ratio of conductivity at 600K and at 300K is =\",ratio;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ratio of conductivity at 600K and at 300K is = 108467.17792\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.15 , Page no:278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"ue=0.39; #in m^2/V-s (mobility of electron)\n",
"n=5E13; #number of donor atoms\n",
"ni=2.4E19; #in atoms/m^3 (intrinsic carrier density)\n",
"l=10; #in mm (length of rod)\n",
"a=1; #in mm (side of square cross-section)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"l=l*1E-3; #changing unit from mm to m\n",
"a=a*1E-3; #changing unit from mm to m\n",
"A=a**2; #calculation of cross-section area\n",
"Nd=n/(l*A); #calculation of donor concentration\n",
"ne=Nd; #calculation of electron density\n",
"nh=ni**2/Nd; #calculation of hole density\n",
"#since sigma=ne*e*ue+nh*e*ue and since ne>>nh\n",
"#therefore sigma=ne*e*ue\n",
"sigma=ne*e*ue; #calculation of conductivity\n",
"rho=1/sigma; #calculation of resistivity\n",
"R=rho*l/A; #calculation of resistance \n",
"\n",
"#result\n",
"print\"The electron density is ne=\",ne,\"/m^3\";\n",
"print\"The hole density is nh=\",nh,\"/m^3\";\n",
"print\"The conductivity is =\",sigma,\"/ohm-m\";\n",
"print\"The resistance is R=\",round(R),\"ohm\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electron density is ne= 5e+21 /m^3\n",
"The hole density is nh= 1.152e+17 /m^3\n",
"The conductivity is = 312.0 /ohm-m\n",
"The resistance is R= 32.0 ohm\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.16 , Page no:279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"RH=3.66E-4; #in m^3/C (Hall coefficient)\n",
"rho=8.93E-3; #in ohm-m (resistivity)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"u=RH/rho; #calculation of mobility\n",
"n=1/(RH*e); #calculation of density\n",
"\n",
"#result\n",
"print\"The mobility is u=\",u,\"m^2/(V-s)\";\n",
"print\"The density is n=\",n,\"/m^3\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mobility is u= 0.0409854423292 m^2/(V-s)\n",
"The density is n= 1.70765027322e+22 /m^3\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.17 , Page no:279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"RH=3.66E-4; #in m^3/C (Hall coefficient)\n",
"rho=8.93E-3; #in ohm-m (resistivity)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"\n",
"#calculate\n",
"nh=1/(RH*e); #calculation of density of charge carrier\n",
"uh=1/(rho*nh*e); #calculation of mobility of charge carrier\n",
"\n",
"#result\n",
"print\"The density of charge carrier is nh=\",nh,\"/m^3\";\n",
"print\"The mobility of charge carrier is uh=\",uh,\"m^2/(V-s)\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The density of charge carrier is nh= 1.70765027322e+22 /m^3\n",
"The mobility of charge carrier is uh= 0.0409854423292 m^2/(V-s)\n"
]
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|