summaryrefslogtreecommitdiff
path: root/Applied_Physics/Chapter8.ipynb
blob: 353fc09960f2c4716f831a4dab66473b517b74c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
{
 "metadata": {
  "name": "",
  "signature": "sha256:aecad4e644a378cab0352aa29e9045a53c52646739e4f4bd6cdff80f1d0741e6"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8:Magnetic Properties"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1 , Page no:236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "X=-0.5E-5; #magnetic susceptibility of silicon\n",
      "H=0.9E4; #in A/m (magnetic field intensity)\n",
      "mu0=4*3.14*1E-7; #in H/m (absolute permeability)\n",
      "\n",
      "#calculate\n",
      "I=X*H; #calculation of intensity of magnetism\n",
      "B=mu0*H*(1+X); #calculation of magnetic flux density\n",
      "\n",
      "#result\n",
      "print\"The intensity of magnetism is I=\",I,\"A/m\";\n",
      "print\"The magnetic flux density is B=\",round(B,3),\"Wb/m^2\";\n",
      "print \"NOTE: The answer in the textbook is wrong\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The intensity of magnetism is I= -0.045 A/m\n",
        "The magnetic flux density is B= 0.011 Wb/m^2\n",
        "NOTE: The answer in the textbook is wrong\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2 , Page no:236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "r=0.052; #in nm (radius of orbit)\n",
      "B=1; #in Wb/m^2 (magnetic field of induction)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "m=9.1E-31; #in Kg (mass of electron)\n",
      "\n",
      "#calculate\n",
      "r=0.052*1E-9; #changing unit from nm to m\n",
      "d_mu=(e**2*r**2*B)/(4*m); #calculation of change in magnetic moment\n",
      "\n",
      "#result\n",
      "print\"The change in magnetic moment is =\",d_mu,\"Am^2\";\n",
      "print \"NOTE: The answer in the textbook is wrong\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The change in magnetic moment is = 1.90171428571e-29 Am^2\n",
        "NOTE: The answer in the textbook is wrong\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3 , Page no:236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "H=220; #in A/m (magnetic field intensity)\n",
      "I=3300; #in A/m (intensity of magnetisation)\n",
      "\n",
      "#calculate\n",
      "mu_r=1+(I/H); #calculation of relative permeability\n",
      "\n",
      "#result\n",
      "print\"The relative permeability of a ferromagentic material is =\",mu_r;"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The relative permeability of a ferromagentic material is = 16.0\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4 , Page no:236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "I=3000; #in A/m (intensity of magnetisation)\n",
      "B=0.005; #in Wb/m^2 (magnetic flus intensity)\n",
      "pi=3.14; #value of pi used in the solution\n",
      "mu0=4*pi*1E-7; #in H/m (absolute permeability)\n",
      "\n",
      "#calculate\n",
      "H=(B/mu0)-I; #calculation of magnetic force\n",
      "mu_r=(I/H)+1; #calculation of relative permeability\n",
      "\n",
      "#result\n",
      "print\"The magnetic force is  H=\",H;\n",
      "print\"The relative permeability is =\",mu_r;"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnetic force is  H= 980.891719745\n",
        "The relative permeability is = 4.05844155844\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5 , Page no:237"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "H=4E3; #in A/m (magnetic field intensity)\n",
      "N=60; #number of turns\n",
      "l=12; #in cm (length of solenoid)\n",
      "\n",
      "#calculate\n",
      "n=N/(l*1E-2); #calculation of number of turns per unit metre\n",
      "#Snice H=n*i;\n",
      "i=H/n; #calculation of current through the solenoid\n",
      "\n",
      "#result\n",
      "print\"The current through the solenoid is i=\",i,\"A\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current through the solenoid is i= 8.0 A\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.6 , Page no:237"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "l=30; #in cm (length of solenoid)\n",
      "A=1; #in cm^2 (cross-sectional area)\n",
      "N=300; #number of turns\n",
      "i=0.032; #in A (current through the winding)\n",
      "phi_B=2E-6; #in Wb (magnetic flux)\n",
      "pi=3.14; #value of pi used in the solution\n",
      "mu0=4*pi*1E-7; #in H/m (absolute permeability)\n",
      "\n",
      "#calculate\n",
      "l=l*1E-2; #changing unit from cm to m\n",
      "A=A*1E-4; #changing unit from cm^2 to m^2\n",
      "B=phi_B/A; #calculation of flux density\n",
      "H=N*i/l; #calculation of magnetic intensity\n",
      "mu=B/H; #calcluation of absolute permeability of iron\n",
      "mu_r=mu/mu0; #calcluation of relative permeability of iron\n",
      "\n",
      "#result\n",
      "print\"The flux density is B=\",B,\"Wb/m^2\";\n",
      "print\"The magnetic intensity is H=\",H,\"A-turns/m\";\n",
      "print\"The relative permeability of iron is =\",round(mu_r),\"    (roundoff error)\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flux density is B= 0.02 Wb/m^2\n",
        "The magnetic intensity is H= 32.0 A-turns/m\n",
        "The relative permeability of iron is = 498.0     (roundoff error)\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.7 , Page no:238"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "A=100; #in m^2 (area of Hysteresis loop)\n",
      "B=0.01; #in Wb/m^2 (unit space along vertical axis or magnetic flux density)\n",
      "H=40; #in A/m (unit space along horizontal axis or magnetic fild ntensity)\n",
      "\n",
      "#calculate\n",
      "H_L=A*B*H; #calculation of magnetic intensity\n",
      "\n",
      "#result\n",
      "print\"The Hystersis loss per cycle is =\",round(H_L),\"J/m^2\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Hystersis loss per cycle is = 40.0 J/m^2\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}