1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
{
"metadata": {
"name": "",
"signature": "sha256:5117f9d565431f3f25738652845b14f8a6fa036b5c0992b0b2e5d69631937306"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7:Dielectric Properties"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1 , Page no:187"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"A=100; #in cm^2 (cross-sectional area)\n",
"d=1; #in cm (seperation between plates)\n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"V=100; #in V (potential difference)\n",
"\n",
"#calculate\n",
"A1=A*1E-4; #changing unit from cm^2 to m^2\n",
"d1=d*1E-2; #changing unit from cm to m\n",
"C=Eo*A1/d1; #calculation of capacitance\n",
"Q=C*V; #calculation of charge\n",
"C1=C*1E12; #changing unit of capacitance from F to pF\n",
"\n",
"#result\n",
"print\"The capacitance of capacitor is C=\",C,\"C\";\n",
"print\"\\t\\t\\t\\t =\",C1,\"C\";\n",
"print\"The charge on the plates is Q=\",Q,\"C\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance of capacitor is C= 8.85e-12 C\n",
"\t\t\t\t = 8.85 C\n",
"The charge on the plates is Q= 8.85e-10 C\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2 , Page no:187"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"A=650; #in mm^2 (cross-sectional area)\n",
"d=4; #in mm (seperation between plates)\n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"Er=3.5; #di-electric constant of the material\n",
"Q=2E-10; #in C (charge on plates)\n",
"\n",
"#calculate\n",
"A1=A*1E-6; #changing unit from mm^2 to m^2\n",
"d1=d*1E-3; #changing unit from mm to m\n",
"C=Er*Eo*A1/d1; #calculation of capacitance\n",
"V=Q/C; #calculation of charge\n",
"C1=C*1E12; #changing unit of capacitance from F to pF\n",
"\n",
"#result\n",
"print\"The capacitance of capacitor is C=\",C,\"C\",\n",
"print\"\\n\\t\\t\\t =\",C1,\"pF\";\n",
"print\"The resultant voltage across the capacitor is V=\",round(V,3),\"V\";\n",
"print \"NOTE: The answer in the textbook is wrong\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance of capacitor is C= 5.0334375e-12 C \n",
"\t\t\t = 5.0334375 pF\n",
"The resultant voltage across the capacitor is V= 39.734 V\n",
"NOTE: The answer in the textbook is wrong\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3 , Page no:188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"N=2.7E25; #in 1/m^3 (density of atoms)\n",
"E=1E6; #in V/m (electric field)\n",
"Z=2; #atomic number of Helium \n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"Er=1.0000684; #(dielectric constant of the material)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"pi=3.14; #value of pi used in the solution\n",
"\n",
"#calculate\n",
"#since alpha=Eo*(Er-1)/N=4*pi*Eo*r_0^3 \n",
"#Therefore we have r_0^3=(Er-1)/(4*pi*N)\n",
"r_0=((Er-1)/(4*pi*N))**(1/3); #calculation of radius of electron cloud\n",
"x=4*pi*Eo*E*r_0/(Z*e); #calculation of dispalcement\n",
"\n",
"#result\n",
"print\"The radius of electron cloud is r_0=\",r_0,\"m\";\n",
"print\"The displacement is x=\",x,\"m\";\n",
"print \"NOTE: The answer in the textbook is wrong\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radius of electron cloud is r_0= 5.86454377988e-11 m\n",
"The displacement is x= 20371.2258874 m\n",
"NOTE: The answer in the textbook is wrong\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4 , Page no:188"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"K=1.000134; #di-elecrtic constant of the neon gas at NTP\n",
"E=90000; #in V/m (electric field)\n",
"Eo=8.85E-12; #in C/N-m^2 (absolute premittivity)\n",
"N_A=6.023E26; #in atoms/Kg-mole (Avogadro's number)\n",
"V=22.4; #in m^3 (volume of gas at NTP\n",
"\n",
"#calculate\n",
"n=N_A/V; #calculaton of density of atoms\n",
"#Since P=n*p=(k-1)*Eo*E\n",
"#therefore we have\n",
"p=(K-1)*Eo*E/n; #calculation of dipole moment induced\n",
"alpha=p/E; #calculation of atomic polarisability\n",
"\n",
"#result\n",
"print\"The dipole moment induced in each atom is p=\",p,\"C-m\";\n",
"print\"The atomic polarisability of neon is =\",alpha,\"c-m^2/V\";\n",
"print \"NOTE: The answer in the textbook is wrong\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dipole moment induced in each atom is p= 3.96940793625e-36 C-m\n",
"The atomic polarisability of neon is = 4.4104532625e-41 c-m^2/V\n",
"NOTE: The answer in the textbook is wrong\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5 , Page no:189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"Er=3.75; #di-elecrtic constant of sulphur at 27 degree Celcius\n",
"gama=1/3; #internal field constant\n",
"p=2050; #in Kg/m^3 (density)\n",
"M_A=32; #in amu (atomic weight of sulphur)\n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"N=6.022E23; #Avogadro's number\n",
"\n",
"#calculate\n",
"#Since ((Er-1)/(Er+2))*(M_A/p)=(N/(3*Eo))*alpha_e\n",
"#therefore we have\n",
"alpha_e=((Er-1)/(Er+2))*(M_A/p)*(3*Eo/N); #calculation of electronic polarisability of sulphur\n",
"\n",
"#result\n",
"print\"The electronic polarisability of sulphur is =\",alpha_e,\"Fm^2 (roundoff error)\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic polarisability of sulphur is = 3.29143088985e-37 Fm^2 (roundoff error)\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6 , Page no:189"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"Er=1.0000684; #di-elecrtic constant of Helium gas at NTP\n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"N=2.7E25; #number of atomsper unit volume\n",
"\n",
"#calculate\n",
"#Since Er-1=(N/Eo)*alpha_e\n",
"#therefore we have\n",
"alpha_e=Eo*(Er-1)/N; #calculation of electronic polarisability of Helium\n",
"\n",
"#result\n",
"print\"The electronic polarisability of Helium gas is =\",alpha_e,\"Fm^2 (roundoff error)\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic polarisability of Helium gas is = 2.242e-41 Fm^2 (roundoff error)\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7 , Page no:190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"N=3E28; #in atoms/m^3 (density of atoms)\n",
"alpha_e=1E-40; #in F-m^2 (electronic polarisability)\n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"\n",
"#calculate\n",
"#Since (Er-1)/(Er+2)=N*alpha_e/(3*Eo)\n",
"#therefore we have\n",
"Er=(2*(N*alpha_e/(3*Eo))+1)/(1-(N*alpha_e/(3*Eo)));\n",
"#calculation of dielectric constant of the material\n",
"\n",
"#result\n",
"print\"The dielectric constant of the material is Er=\",Er,\"F/m\",\n",
"print \"NOTE: The answer in the book is wrong \""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The dielectric constant of the material is Er= 1.3821656051 F/m NOTE: The answer in the book is wrong \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8 , Page no:190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"Er=4; #relative permittivity of sulphur\n",
"Eo=8.85E-12; #in F/m (absolute permittivity)\n",
"NA=2.08E3; #in Kg/m^3 (density of atoms in sulphur)\n",
"\n",
"#calculate\n",
"#Since ((Er-1)/(Er+2))*(M_A/p)=(N/(3*Eo))*alpha_e\n",
"#therefore we have\n",
"alpha_e=((Er-1)/(Er+2))*(3*Eo/NA); #calculation of electronic polarisability of sulphur\n",
"\n",
"#result\n",
"print\"The electronic polarisability of sulphur is =\",alpha_e,\"Fm^2\";\n",
"print \"NOTE: The answer in the book is wrong and they used the wrong formula \" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electronic polarisability of sulphur is = 6.38221153846e-15 Fm^2\n",
"NOTE: The answer in the book is wrong and they used the wrong formula \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.9 , Page no:190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"alpha1=2.5E-39; #in C^2-m/N (dielectric constant at 300K)\n",
"alpha2=2.0E-39; #in C^2-m/N (dielectric constant at 400K)\n",
"T1=300; #in K(first temperature)\n",
"T2=400; #in K(second temperature)\n",
"\n",
"#calculate\n",
"#since alpha=alpha_d+alpha0 and alpha0=Beta/T\n",
"#therefore alpha=alpha_d+(Beta/T)\n",
"#since alpha1=alpha_d+(Beta/T1) and alpha2=alpha_d+(Beta/T2)\n",
"#therefore alpha1-apha2=Beta*((1/T1)-(1/T2))\n",
"#or Beta= (alpha1-apha2)/ ((1/T1)-(1/T2))\n",
"Beta= (alpha1-alpha2)/ ((1/T1)-(1/T2)); #calculation of Beta\n",
"alpha_d=alpha1-(Beta/T1); #calculation of polarisability due to defromation\n",
"alpha0_1=Beta/T1; #calculation of polarisability due to permanent dipole moment at 300K\n",
"alpha0_2=Beta/T2; #calculation of polarisability due to permanent dipole moment at 400K\n",
"\n",
"#result\n",
"print\"The polarisability due to permanent dipole moment at 300K is =\",alpha0_1,\"C^2-m/N\";\n",
"print\"The polarisability due to permanent dipole moment at 400K is =\",alpha0_2,\"C^2-m/N\";\n",
"print\"The polarisability due to deformation of the molecules is =\",alpha_d,\"C^2-m/N\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The polarisability due to permanent dipole moment at 300K is = 2e-39 C^2-m/N\n",
"The polarisability due to permanent dipole moment at 400K is = 1.5e-39 C^2-m/N\n",
"The polarisability due to deformation of the molecules is = 5e-40 C^2-m/N\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10 , Page no:191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#given\n",
"n=1.5; #refractive index\n",
"Er=5.6; #dielectric constant\n",
"\n",
"#calculate\n",
"#since (Er-1)/(Er+2)=N*(alpha_e+alpha_i)/(3*E0) Clausius-Mossotti equation\n",
"#and (n^2-1)/(n^2+2)=N*alpha_e/(3*E0) \n",
"#from above two equations, we get ((n^2-1)/(n^2+2))*((Er+2)/(Er-1))=alpha_e/(alpha_e+alpha_i)\n",
"#or alpha_i/ (alpha_e+alpha_i)= 1-((n^2-1)/(n^2+2))*((Er+2)/(Er-1))= (say P)\n",
"#where P is fractional ionisational polarisability\n",
"P=1-((n**2-1)/(n**2+2))*((Er+2)/(Er-1)); #calculation of fractional ionisational polarisability\n",
"P1=P*100; #calculation of percentage of ionisational polarisability\n",
"\n",
"#result\n",
"print\"The percentage of ionisational polarisability is =\",P1,\"percent\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The percentage of ionisational polarisability is = 51.4066496164 percent\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|