summaryrefslogtreecommitdiff
path: root/Applied_Physics/Chapter6.ipynb
blob: ff063bb659dba3630923ca996b7d745810827b24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
{
 "metadata": {
  "name": "",
  "signature": "sha256:0c3d2d354976eaba7e5a0f2e0cf4b1fd72cd55b3826ca7e7cd6acde8afff2cdf"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6:Electron Theory and Band Theory of Metals"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.1 , Page no:146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "n=8.5E28; #in 1/m^3 (density of electron)\n",
      "m_e=9.11E-31; #in Kg (mass of electron)\n",
      "k=1.38E-23; #in J/K (Boltzmann's constant)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "T=300; #in K (temperature)\n",
      "p=1.69E-8; #in ohm-m (resistivity)\n",
      "\n",
      "#calculate\n",
      "lambda1=math.sqrt(3*k*m_e*T)/(n*e**2*p); #calculation of mean free path\n",
      "lambda2=lambda1*1E9; #changing unit from m to nanometer\n",
      "\n",
      "#result\n",
      "print\"The mean free path of electron is =\",lambda1,\"m\";\n",
      "print\"\\t\\t\\t\\t  =\",round(lambda2,2),\"nm\";\n",
      "#Note: answer in the book is wrong due to printing mistake"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mean free path of electron is = 2.89250681437e-09 m\n",
        "\t\t\t\t  = 2.89 nm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.2 , Page no:146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "k=1.38E-23; #in J/K (Boltzmann's constant)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "P_E=1; #in percentage (probability that a state with an energy 0.5 eV above Fermi energy will be occupied)\n",
      "E=0.5; #in eV (energy above Fermi level)\n",
      "\n",
      "#calculate\n",
      "P_E=1/100; #changing percentage into ratio\n",
      "E=E*e; #changing unit from eV to J\n",
      "#P_E=1/(1+exp((E-E_F)/k*T))\n",
      "#Rearranging this equation, we get\n",
      "#T=(E-E_F)/k*log((1/P_E)-1)\n",
      "#Since E-E_F has been denoted by E  therefore\n",
      "T=E/(k*math.log((1/P_E)-1));\n",
      "\n",
      "#result\n",
      "print\"The temperature is T=\",round(T),\"K\";\n",
      "# Note: There is slight variation in the answer due to logarithm function"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The temperature is T= 1262.0 K\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.3 , Page no:147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "n=5.8E28; #in 1/m^3 (density of electron)\n",
      "m=9.1E-31; #in Kg (mass of electron)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "p=1.54E-8; #in ohm-m (resistivity)\n",
      "\n",
      "#calculate\n",
      "t=m/(n*e**2*p); #calculation of relaxation time\n",
      "\n",
      "#result\n",
      "print\"The relaxation time of conduction electrons is =\",t,\"sec\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The relaxation time of conduction electrons is = 3.97972178683e-14 sec\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.4 , Page no:147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "n=8.5E28; #in 1/m^3 (density of electron)\n",
      "m=9.1E-31; #in Kg (mass of electron)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "sigma=6E7; #in 1/ohm-m (conductivity)\n",
      "E_F=7; #in E=eV (Fermi energy of Copper)\n",
      "\n",
      "#calculate\n",
      "E_F=E_F*e; #changing unit from eV to J\n",
      "v_F=math.sqrt(2*E_F/m); #calculation of velocity of electrons\n",
      "#Since sigma=n*e^2*lambda/(2*m*v_F)\n",
      "#Therefore we have\n",
      "lambda1=2*m*v_F*sigma/(n*e**2); #calculation of mean free path\n",
      "lambda2=lambda1*1E10; #changing unit from m to Angstrom\n",
      "\n",
      "#result\n",
      "print\"The velocity of the electrons is v_F=\",v_F,\"m/s   (roundoff error)\";\n",
      "print\"The mean free path traveled by the electrons is=\",round(lambda2),\"Angstrom\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of the electrons is v_F= 1568929.08111 m/s   (roundoff error)\n",
        "The mean free path traveled by the electrons is= 787.0 Angstrom\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.5 , Page no:147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "n=6.5E28; #in 1/m^3 (density of electron)\n",
      "m=9.1E-31; #in Kg (mass of electron)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "p=1.43E-8; #in ohm-m (resistivity)\n",
      "\n",
      "#calculate\n",
      "t=m/(n*e**2*p); #calculation of relaxation time\n",
      "\n",
      "#result\n",
      "print\"The relaxation time of conduction electrons is =\",t,\"sec\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The relaxation time of conduction electrons is = 3.8243006993e-14 sec\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6 , Page no:148"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "T=30; #in Celcius (temperature)\n",
      "k=1.38E-23; #in J/K (Boltzmann's constant)\n",
      "m_p=1.67E-27; #in Kg (mass of proton)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "\n",
      "#calculate\n",
      "T=T+273; #changing temperature from Celcius to Kelvin\n",
      "KE=(3/2)*k*T; #calculation of average kinetic energy\n",
      "KE1=KE/e; #changing unit from J to eV\n",
      "m=1.008*2*m_p; #calculating mass of hydrogen gas molecule\n",
      "c=math.sqrt(3*k*T/m); #calculation of velocity\n",
      "\n",
      "#result\n",
      "print\"The average kinetic energy of gas ,molecules is KE=\",KE,\"J\";\n",
      "print\"\\t\\t\\t\\t\\t\\t  =\",KE1,\"eV   (Answer is wrong in textbook)\";\n",
      "print\"The velocity of molecules is c=\",round(c,2),\"m/s\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The average kinetic energy of gas ,molecules is KE= 6.2721e-21 J\n",
        "\t\t\t\t\t\t  = 0.039200625 eV   (Answer is wrong in textbook)\n",
        "The velocity of molecules is c= 1930.27 m/s\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.7 , Page no:148"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "E=10; #in eV (kinetic energy for each electron and proton)\n",
      "m_e=9.1E-31; #in Kg (mass of electron)\n",
      "m_p=1.67E-27; #in Kg (mass of proton)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "\n",
      "#calculate\n",
      "E=E*e; #changing unit from eV to J\n",
      "#since E=m*v^2/2\n",
      "#therefore  v=sqrt(2E/m)\n",
      "v_e=math.sqrt(2*E/m_e); #calculation of kinetic energy of electron\n",
      "v_p=math.sqrt(2*E/m_p); #calculation of kinetic energy of proton\n",
      "\n",
      "#result\n",
      "print\"The kinetic energy of electron is v_e=\",v_e,\"m/s\";\n",
      "print\"The kinetic energy of proton is v_p=\",v_p,\"m/s\";\n",
      "print \"Note: Answer is wrong in textbook\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The kinetic energy of electron is v_e= 1875228.92375 m/s\n",
        "The kinetic energy of proton is v_p= 43774.0524132 m/s\n",
        "Note: Answer is wrong in textbook\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.8 , Page no:149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "I=100; #in A (current in the wire)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "A=10; #in mm^2 (cross-sectional area)\n",
      "n=8.5E28; #in 1/m^3 (density of electron)\n",
      "\n",
      "#calculate\n",
      "A=A*1E-6; #changing unit from mm^2 to m^2\n",
      "v_d=I/(n*A*e);\n",
      "\n",
      "#result\n",
      "print\"The drift velocity of free electrons is v_d=\",v_d,\"m/s\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The drift velocity of free electrons is v_d= 0.000735294117647 m/s\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.9 , Page no:149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "I=4;#in A (current in the conductor)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "A=1E-6; #in m^2 (cross-sectional area)\n",
      "N_A=6.02E23; #in atoms/gram-atom (Avogadro's number)\n",
      "p=8.9; #in g/cm^3 (density)\n",
      "M=63.6; #atomic mass of copper\n",
      "\n",
      "#calculate\n",
      "n=N_A*p/M; #Calculation of density of electrons in g/cm^3\n",
      "n1=n*1E6; #changing unit from g/cm^3 to g/m^3\n",
      "v_d=I/(n1*A*e);\n",
      "\n",
      "#result\n",
      "print\"The density of copper atoms is n=\",n,\"atoms/m^3\";\n",
      "print\"\\t\\t\\t        =\",n1,\"atoms/m^3\";\n",
      "print\"The average drift velocity of free electrons is v_d=\",v_d,\"m/s\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The density of copper atoms is n= 8.42421383648e+22 atoms/m^3\n",
        "\t\t\t        = 8.42421383648e+28 atoms/m^3\n",
        "The average drift velocity of free electrons is v_d= 0.000296763596999 m/s\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.10 , Page no:149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "n=9E28; #in 1/m^3 (density of valence electrons)\n",
      "sigma=6E7; #in mho/m (conductivity of copper)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "\n",
      "#calculate\n",
      "#Since sigma=n*e*mu  therefore\n",
      "mu=sigma/(n*e); #calculation of mobility of electron\n",
      "\n",
      "#result\n",
      "print\"The mobility of electrons is =\",mu,\"m^2/V-s\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mobility of electrons is = 0.00416666666667 m^2/V-s\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.11 , Page no:150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "E_F=5.51; #in eV (Fermi energy in Silver)\n",
      "k=1.38E-23; #in J/K (Boltzmann's constant)\n",
      "e=1.6E-19; #in C (charge of electron)\n",
      "\n",
      "#calculate\n",
      "#part-(a)\n",
      "Eo=(3/5)*E_F; #calculation of average energy of free electron at 0K\n",
      "#part-(b)\n",
      "Eo1=Eo*e; #changing unit from eV to J\n",
      "#Since for a classical particle E=(3/2)*k*T\n",
      "#therefroe we have\n",
      "T=(2/3)*Eo1/k; #calculation of temperature for a classical particle (an ideal gas)\n",
      "\n",
      "#result\n",
      "print\"The average energy of free electron at 0K is Eo=\",Eo,\"eV\";\n",
      "print\"The temperature at which a classical particle have this much energy is T=\",T,\"K\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The average energy of free electron at 0K is Eo= 3.306 eV\n",
        "The temperature at which a classical particle have this much energy is T= 25553.6231884 K\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.12 , Page no:150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given\n",
      "E_F_L=4.7; #in eV (Fermi energy in Lithium)\n",
      "E_F_M=2.35; #in eV (Fermi energy in a metal)\n",
      "n_L=4.6E28; #in 1/m^3 (density of electron in Lithium)\n",
      "\n",
      "#calculate\n",
      "#Since n=((2*m/h)^3/2)*E_F^(3/2)*(8*pi/3) and all things except E_F are constant\n",
      "# Therefore we have n=C*E_F^(3/2)   where C is proportionality constant\n",
      "#n1/n2=(E_F_1/E_F_2)^(3/2)\n",
      "#Therefore we have\n",
      "n_M=n_L*(E_F_M/E_F_L); #calculation of electron density for a metal\n",
      "\n",
      "#result\n",
      "print\"The lectron density for a metal is =\",n_M,\"1/m^3\";\n",
      "print \"Note: Answer in the book is wrong \""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The lectron density for a metal is = 2.3e+28 1/m^3\n",
        "Note: Answer in the book is wrong \n"
       ]
      }
     ],
     "prompt_number": 12
    }
   ],
   "metadata": {}
  }
 ]
}