1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
{
"metadata": {
"name": "",
"signature": "sha256:7b7dfd33b7ab2e69421d0f26bfbfaa20f35bc1084164b445bbbc400215113c08"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1:Bonding in Solids"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3 , Page no:15"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r=2; #in angstrom(distance)\n",
"e=1.6E-19; # in C (charge of electron)\n",
"E_o= 8.85E-12;# absolute premittivity\n",
"\n",
"#calculate\n",
"r=2*1*10**-10; # since r is in angstrom\n",
"V=-e**2/(4*3.14*E_o*r); # calculate potential\n",
"V1=V/e; # changing to eV\n",
"\n",
"#result\n",
"print \"\\nThe potential energy is V = \",V,\"J\";\n",
"print \"In electron-Volt V = \",round(V1,3),\"eV\"; \n",
"print \"Note: the answer in the book is wrong due to calculation mistake\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The potential energy is V = -1.15153477995e-18 J\n",
"In electron-Volt V = -7.197 eV\n",
"Note: the answer in the book is wrong due to calculation mistake\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4 , Page no:15"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"#given\n",
"r0=0.236; #in nanometer(interionic distance)\n",
"e=1.6E-19; # in C (charge of electron)\n",
"E_o= 8.85E-12;# absolute premittivity\n",
"N=8; # Born constant\n",
"IE=5.14;# in eV (ionisation energy of sodium)\n",
"EA=3.65;# in eV (electron affinity of Chlorine)\n",
"pi=3.14; # value of pi used in the solution\n",
"\n",
"#calculate\n",
"r0=r0*1E-9; # since r is in nanometer\n",
"PE=(e**2/(4*pi*E_o*r0))*(1-1/N); # calculate potential energy\n",
"PE=PE/e; #changing unit from J to eV\n",
"NE=IE-EA;# calculation of Net energy\n",
"BE=PE-NE;# calculation of Bond Energy\n",
"\n",
"#result\n",
"print\"The potential energy is PE= \",round(PE,2),\"eV\";\n",
"print\"The net energy is NE= \",round(NE,2),\"eV\";\n",
"print\"The bond energy is BE= \",round(BE,2),\"eV\";\n",
"# Note: (1)-In order to make the answer prcatically feasible and avoid the unusual answer, I have used r_0=0.236 nm instead of 236 nm. because using this value will give very much irrelevant answer.\n",
"# Note: (2) There is slight variation in the answer due to round off."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The potential energy is PE= 5.34 eV\n",
"The net energy is NE= 1.49 eV\n",
"The bond energy is BE= 3.85 eV\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.5 , Page no:16"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r_0=.41; #in mm(lattice constant)\n",
"e=1.6E-19; #in C (charge of electron)\n",
"E_o= 8.85E-12; #absolute premittivity\n",
"n=0.5; #repulsive exponent value\n",
"alpha=1.76; #Madelung constant\n",
"pi=3.14; # value of pi used in the solution\n",
"\n",
"#calculate\n",
"r=.41*1E-3; #since r is in mm\n",
"Beta=72*pi*E_o*r**4/(alpha*e**2*(n-1)); #calculation compressibility\n",
"\n",
"#result\n",
"print\"The compressibility is\tBeta=\",round(Beta);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The compressibility is\tBeta= -2.50967916144e+15\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.6 , Page no:16"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r_0=3.56; #in Angstrom\n",
"e=1.6E-19; #in C (charge of electron)\n",
"IE=3.89; #in eV (ionisation energy of Cs)\n",
"EA=-3.61; #in eV (electron affinity of Cl)\n",
"n=10.5; #Born constant\n",
"E_o= 8.85E-12; #absolute premittivity\n",
"alpha=1.763; #Madelung constant\n",
"pi=3.14; #value of pi used in the solution\n",
"\n",
"#calculate\n",
"r_0=r_0*1E-10; #since r is in nanometer\n",
"U=-alpha*(e**2/(4*pi*E_o*r_0))*(1-1/n); #calculate potential energy\n",
"U=U/e; #changing unit from J to eV\n",
"ACE=U+EA+IE; #calculation of atomic cohesive energy\n",
"\n",
"#result\n",
"print\"The ionic cohesive energy is \",round(U),\"eV\";\n",
"print\"The atomic cohesive energy is\",round(ACE),\"eV\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ionic cohesive energy is -6.0 eV\n",
"The atomic cohesive energy is -6.0 eV\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.7 , Page no:17"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"r_0=2.81; #in Angstrom\n",
"e=1.6E-19; #in C (charge of electron)\n",
"n=9; #Born constant\n",
"E_o= 8.85E-12; #absolute premittivity\n",
"alpha=1.748; #Madelung constant\n",
"pi=3.14; #value of pi used in the solution\n",
"\n",
"#calculate\n",
"r_0=r_0*1E-10; #since r is in nanometer\n",
"V=-alpha*(e**2/(4*pi*E_o*r_0))*(1-1/n); #calculate potential energy\n",
"V=V/e; #changing unit from J to eV\n",
"V_1=V/2; #Since only half of the energy contribute per ion to the cohecive energy therfore\n",
"\n",
"#result\n",
"print\"The potential energy is V=\",round(V,2),\"eV\";\n",
"print\"The energy contributing per ions to the cohesive energy is \",round(V_1,2),\"eV\";"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The potential energy is V= -7.96 eV\n",
"The energy contributing per ions to the cohesive energy is -3.98 eV\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|