summaryrefslogtreecommitdiff
path: root/Applied_Physics-II_by_I_A_Shaikh/chapter6.ipynb
blob: dec8353e267f8e29655ff418cce1395f6df616d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
{
 "metadata": {
  "celltoolbar": "Raw Cell Format",
  "name": "",
  "signature": "sha256:bc506d3130781232c57938d478c5c5179ee56efb068c1be93d57258ec96fcd79"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6: Magnetic Materials and Circuits"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.1,Page number 2-26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "H=198                  #Magnetizing Force in Ampere per meter\n",
      "M=2300                 #Magnetization in Ampere per meter\n",
      "u0=4*math.pi*10**-7    #Permeability in vacuum\n",
      "\n",
      "#Calculations:\n",
      "#H=(B/u0)-M\n",
      "B=u0*(H+M)             #Flux Density\n",
      "ur=B/(u0*H)            #Relative Permeability\n",
      "\n",
      "print\"Corresponding Flux Density is =\",B,\"Wb/m^2\"\n",
      "print\"Relative Permeability is =\",ur\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Corresponding Flux Density is = 0.00313907937947 Wb/m^2\n",
        "Relative Permeability is = 12.6161616162\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.2,Page number 2-26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "x=3.7*10**-3           #Susceptibility at T=300 K\n",
      "T=300                  #Temperature in kelvin\n",
      "T1=250                 #Temperature in kelvin\n",
      "T2=600                 #Temperature in kelvin\n",
      "\n",
      "#Calculations:\n",
      "C=x*T                  #Curie's law\n",
      "ur1=C/T1               #Relative permeability at 250 K\n",
      "ur2=C/T2               #Relative permeability at 600 K\n",
      "\n",
      "print\"Relative Permeability at 250 K is =\",ur1\n",
      "print\"Relative Permeability at 600 K is =\",ur2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Relative Permeability at 250 K is = 0.00444\n",
        "Relative Permeability at 600 K is = 0.00185\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.3,Page number 2-27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u=0.8*10**-23          #Magnetic dipole moment of an atom in paramagnetic gas in J/T\n",
      "B=0.8                  #Magnetic field in tesla\n",
      "K=1.38*10**-23         #Boltzmann constant\n",
      "\n",
      "#To find Temperature at which Average thermal energy is equal to Magnetic energy \n",
      "#i.e. uB=3KT/2\n",
      "T=2*u*B/(3*K)          #Required temperature\n",
      "\n",
      "print\"Required temperature is =\",T,\"Kelvin\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Required temperature is = 0.309178743961 Kelvin\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.4,Page number 2-27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "T=27+273           #Temperature in kelvin\n",
      "B=0.5              #Magnetic field in tesla\n",
      "C=2*10**-3         #Curie's Constant\n",
      "u0=4*math.pi*10**-7    #Permeability in vacuum\n",
      "\n",
      "#  C=u0*M*T/B (Curie's law)\n",
      "M=C*B/(u0*T)      #Magnetization of material at 300 K\n",
      "\n",
      "print\"Magnetization of material at 300 K is =\",M,\"A/m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetization of material at 300 K is = 2.65258238486 A/m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.5,Page number 2-27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "B=10.9*10**-5            #Horizontal component of B in wb/m^2\n",
      "u0=4*math.pi*10**-7     #Permeability in free space\n",
      "\n",
      "H=B/u0                  #Horizontal component of magnetic field\n",
      "print\"Horizontal component of magnetic field is =\",H,\"Ampere/meter\"\n",
      "print\"(Print mistake in unit in book)\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Horizontal component of magnetic field is = 86.7394439851 Ampere/meter\n",
        "(Print mistake in unit in book)\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6,Page number 2-28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "ur=900                  #Relative permeability of medium\n",
      "l=2                      #length in meter\n",
      "A=60*10**-4             #Crosss sectional area of ring in m^2\n",
      "phi=5.9*10**-3          #flux in weber\n",
      "n=700                   #Number of turns\n",
      "\n",
      "#Calculations:\n",
      "#We know, phi=B*A\n",
      "B=phi/A            #Flux density\n",
      "#But, B=u*H\n",
      "H=B/(u0*ur)        #Magnetic field strength\n",
      "\n",
      "I=H*l/n            #Required current\n",
      "print\"Current required to produce given flux is =\",I,\"Ampere\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current required to produce given flux is = 2.48416445567 Ampere\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.7,Page number 2-28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "\n",
      "u0=4*math.pi*10**-7    #Permeability in vacuum\n",
      "ur=900                 #Relative permeability of medium\n",
      "r=25*10**-2            #radius of ring\n",
      "A=25*10**-4            #Crosss sectional area of ring in m^2\n",
      "Ag=1*10**-3            #Air gap\n",
      "phi=2.7*10**-3         #flux in weber\n",
      "N=400                  #Number of turns\n",
      "\n",
      "#Calculations:\n",
      "#We know, phi=B*A\n",
      "B=phi/A            #Flux density\n",
      "#But, B=u*H\n",
      "H=B/(u0*ur)        #Magnetic field strength\n",
      "L=H*2*math.pi*r+(B*Ag/u0)   #Total amp turns required (iron+air)\n",
      "I=L/N           #Required current\n",
      "\n",
      "print\"Current required to produce given flux is =\",I,\"Ampere\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current required to produce given flux is = 5.89859173174 Ampere\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.8,Page number 2-29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "A=0.2*10**-4            #Crosss sectional area of iron bar in m^2\n",
      "H=1600                  #magnetising field in A/m\n",
      "phi=2.4*10**-5          #Magnetic flux in weber\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "#We know, phi=B*A\n",
      "B=phi/A            #Flux density\n",
      "u=B/H              #magnetic permeability\n",
      "ur=u/u0            #relative permeability\n",
      "xm=ur-1            #susceptibility of the iron bar\n",
      "\n",
      "print\"magnetic permeability of iron bar is =\",u,\"N/(A^2)\"\n",
      "print\"susceptibility of the iron bar is =\",xm\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "magnetic permeability of iron bar is = 0.00075 N/(A^2)\n",
        "susceptibility of the iron bar is = 595.831036595\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.9,Page number 2-29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7       #Permeability in vacuum\n",
      "xm=948*10**-11            #susceptibility of the iron bar\n",
      "\n",
      "#Calculations:\n",
      "ur=1+xm            #relative permeability\n",
      "u=u0*ur            #permeability of medium\n",
      "\n",
      "print\"Relative Permeability of medium is =\",ur\n",
      "print\"Permeability of medium is =\",u,\"H/m\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Relative Permeability of medium is = 1.00000000948\n",
        "Permeability of medium is = 1.25663707335e-06 H/m\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.10,Page number 2-30"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "B=2.5                #Magnetic field in tesla\n",
      "u0=4*math.pi*10**-7    #Permeability in free space\n",
      "i0=0.7               #current in the core\n",
      "ri=11*10**-2         #inner radii of core\n",
      "ro=12*10**-2         #outer radii of core\n",
      "\n",
      "#Calculations:\n",
      "r=(ri+ro)/2          #Average radii of core\n",
      "n=3000/(2*math.pi*r)    #Number of turns\n",
      "\n",
      "#We know, B=u0*ur*n*i0 .Thus,\n",
      "ur=B/(u0*n*i0)\n",
      "\n",
      "print\"Relative Permeability of medium is =\",ur\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Relative Permeability of medium is = 684.523809524\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.11,Page number 2-31"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "B=1.0                #Flux density in tesla\n",
      "u0=4*math.pi*10**-7     #Permeability in free space\n",
      "i=2.0                #current in the core\n",
      "n=10*100             #n=N/l i.e. turns per meter\n",
      "\n",
      "#Calculations:\n",
      "H=n*i               #Magnetising force produced in wire\n",
      "print\"Magnetising force produced in wire is =\",H,\"Amp-turn/meter\"\n",
      "\n",
      "#We know that, B=u0(H+I).Thus,\n",
      "I=B/u0-H            #Magnetisation of material\n",
      "print\"Magnetisation of material is =\",I,\"Amp-turn/meter\"\n",
      "\n",
      "#u=B/H, i.e. ur*u0=B/H.\n",
      "ur=B/(u0*H)        #Relative permeability of core\n",
      "print\" Relative Permeability of core is =\",ur\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetising force produced in wire is = 2000.0 Amp-turn/meter\n",
        "Magnetisation of material is = 793774.715459 Amp-turn/meter\n",
        " Relative Permeability of core is = 397.88735773\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.12,Page number 2-31"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "M=40             #Mass of an iron core\n",
      "D=7.5*10**3      #Density of iron\n",
      "f=100            #Frequency\n",
      "A=3800*10**-1    #Loss due to Area of hysterisis loop in J/m^3\n",
      "\n",
      "#Calculations:\n",
      "V=M/D            #Volume of iron core\n",
      "L1=A*V           #Loss of energy in core per cycle\n",
      "print\"Loss of energy in core per cycles is =\",L1,\"joules\"\n",
      "\n",
      "N=f*60           #Number of cycles per minute\n",
      "L=L1*N           #Loss of energy per minute\n",
      "\n",
      "print\"Loss of energy per minute is =\",L,\"joules\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Loss of energy in core per cycles is = 2.02666666667 joules\n",
        "Loss of energy per minute is = 12160.0 joules\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.13,Page number 2-32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "l=30*10**-2             #length in meter\n",
      "A=1*10**-4          #Crosss sectional area of ring in m^2\n",
      "phi=2*10**-6        #flux in weber\n",
      "N=300               #Number of turns\n",
      "I=0.032             #Current in winding\n",
      "\n",
      "#Calculations:\n",
      "#(i):\n",
      "B=phi/A             #Flux density\n",
      "print\"(i)Flux Density in the ring is =\",B,\"Wb/m^2\"\n",
      "\n",
      "#(ii):\n",
      "H=N*I/l            #Magnetic intensity\n",
      "print\"(ii)Magnetic intensity is =\",H,\"Amp-turn/meter\"\n",
      "\n",
      "#(iii):\n",
      "u=B/H              #Permeability of ring\n",
      "print\"(iii)Permeability of ring is =\",u,\" Wb/A-m\"\n",
      "ur=u/u0            #Relative permeability of ring\n",
      "print\"Relative Permeability of ring is =\",ur\n",
      "\n",
      "#(iv):\n",
      "xm=ur-1            #susceptibility of the ring\n",
      "print\"(iv)Magnetic susceptibility of the ring is =\",xm\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)Flux Density in the ring is = 0.02 Wb/m^2\n",
        "(ii)Magnetic intensity is = 32.0 Amp-turn/meter\n",
        "(iii)Permeability of ring is = 0.000625  Wb/A-m\n",
        "Relative Permeability of ring is = 497.359197162\n",
        "(iv)Magnetic susceptibility of the ring is = 496.359197162\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.14,Page number 2-32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Dta:\n",
      "M=12*10**3       #Mass of an iron core in grams\n",
      "D=7.5            #Density of iron in gm/cc\n",
      "f=50             #Frequency\n",
      "A=3000           #loss due to Area of hysterisis loop in ergs/cm^3\n",
      "\n",
      "#Calculations:\n",
      "V=M/D            #Volume of iron core\n",
      "L1=A*V           #Loss of energy in core per cycle\n",
      "\n",
      "L=L1*f*3600      #Loss of energy per hour\n",
      "\n",
      "print\"Loss of energy per hour is =\",L,\"Erg\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Loss of energy per hour is = 8.64e+11 Erg\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.15,Page number 2-33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "A=0.5*10**3            #Area of B-H loop in Joules per m^3\n",
      "V=10**-3               #Volume of specimen in m^3\n",
      "n=50                   #Frequency of a.c.\n",
      "\n",
      "#Calculations:\n",
      "H=n*V*A               #Hysteresis power loss\n",
      "\n",
      "print\"Hysteresis power loss is =\",H,\"Watt\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hysteresis power loss is = 25.0 Watt\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.16,Page number 2-33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "ur=1000             #Relative permeability of medium\n",
      "V=10**-4            #Volume of iron rod in m^3\n",
      "n=500               #Number of turns per meter\n",
      "i=0.5               #Current in windings of solenoid in Amperes\n",
      "\n",
      "#Calculations:\n",
      "#We know I=(ur-1)H\n",
      "#and H=ni , hence\n",
      "I=(ur-1)*n*i       #Intensity of magnetisation\n",
      "M=I*V              #Magnetic moment\n",
      "\n",
      "print\"Magnetic moment of the rod is =\",M,\"A-m^2\"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic moment of the rod is = 24.975 A-m^2\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.17,Page number 2-34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "ur=600             #Relative permeability of iron\n",
      "d=12*10**-2        #mean diameter of ring in m\n",
      "N=500              #Number of turns\n",
      "i=0.3              #Current in windings of solenoid in Amperes\n",
      "\n",
      "#Calculations:\n",
      "r=d/2              #Radius of ring\n",
      "\n",
      "B=u0*ur*N*i/(2*math.pi*r)     #Flux densityin the core\n",
      "print\"Flux densityin the core is =\",B,\"Wb/m^2\"\n",
      "\n",
      "H=B/(u0*ur)         #Magnetic intensity\n",
      "print\"Magnetic intensity is =\",H,\"Amp-turns/m\"\n",
      "\n",
      "#We know that, B=u0(H+I)\n",
      "I1=(B-u0*H)/u0      #magnetisation\n",
      "I2=u0*I1            #Electronic current loop\n",
      "\n",
      "I=I2/B*100          #Percentage flux density due to electroniuc loop currents\n",
      "print\"Percentage flux density due to electroniuc loop currents is =\",I,\"percent\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Flux densityin the core is = 0.3 Wb/m^2\n",
        "Magnetic intensity is = 397.88735773 Amp-turns/m\n",
        "Percentage flux density due to electroniuc loop currents is = 99.8333333333 percent\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.18,Page number 2-35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "\n",
      "u0=4*math.pi*10**-7   #Permeability in vacuum\n",
      "ur=900               #Relative permeability of iron ring\n",
      "d=40*10**-2          #diameter of ring\n",
      "l=5*10**-3           #air gap in the ring\n",
      "A=5.8*10**-4         #Crosss sectional area of ring in m^2\n",
      "phi=1.5*10**-4       #flux in weber\n",
      "N=600                #Number of turns\n",
      "\n",
      "#Calculations:\n",
      "r=d/2                #Radius of ring\n",
      "\n",
      "#We know, phi=B*A\n",
      "B=phi/A              #Flux density\n",
      "\n",
      "#But, B=u*H\n",
      "H=B/(u0*ur)          #Magnetic field strength\n",
      "\n",
      "m1=H*ur*l            #amp-turns in air gap\n",
      "m2=H*2*math.pi*r     #amp-turns by ring\n",
      "m=m1+m2              #total mmf(amp-turns) required\n",
      "\n",
      "I=m/N                #Required current\n",
      "print\"Current required to produce given flux is =\",I,\"Amperes\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current required to produce given flux is = 2.19395891742 Amperes\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.18.1,Page number 2-38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7    #Permeability in vacuum\n",
      "X=-0.5*10**-5          #Magnetic susceptibility of silicon\n",
      "H=9.9*10**4            #Magnetic field intensity\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#As, X=I/H. thus,\n",
      "I=X*H                  #intensity of magnetisation\n",
      "print\"Intensity of magnetisation is =\",I\n",
      "\n",
      "B=u0*(H+I)             #Magnetic flux density\n",
      "print\"Magnetic flux density is =\",B,\"Wb/ m^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Intensity of magnetisation is = -0.495\n",
        "Magnetic flux density is = 0.124406447047 Wb/ m^2\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.18.2,Page number 2-38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "ur=380              #Relative permeability\n",
      "d=20*10**-2         #diameter of solenoid in m\n",
      "r=d/2               #radius of ring in m\n",
      "A=5*10**-4           #Crosss sectional area of ring in m^2\n",
      "phi=2*10**-3         #flux in weber\n",
      "N=200                #Number of turns\n",
      "\n",
      "#Calculations:\n",
      "l=math.pi*d          #air gap in the ring\n",
      "S=(l/(u0*ur*A))      #Reluctance of iron ring\n",
      "print\"Reluctance of iron ring is =\",S,\"Amp-turn/ Wb \"\n",
      "\n",
      "#ohm's law for magnetic circuit is  phi=N*I/S. thus,\n",
      "I=S*phi/N            #required current\n",
      "print\"Current required to obtain given magnetic flux is =\",I,\"Amperes\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Reluctance of iron ring is = 2631578.94737 Amp-turn/ Wb \n",
        "Current required to obtain given magnetic flux is = 26.3157894737 Amperes\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.18.3,Page number 2-39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Values:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "ur=1               #Relative permeability of air\n",
      "r=15*10**-2        #radius of ring in m\n",
      "A=6*10**-4         #Crosss sectional area of ring in m^2\n",
      "I=4                #Coil current in amp\n",
      "N=500              #Number of turns\n",
      "\n",
      "#Calculations:\n",
      "m=N*I              #MMF of coil\n",
      "print\"MMF of coil is =\",m,\"Ampere-turn\"\n",
      "\n",
      "l=2*math.pi*r      #air gap\n",
      "R=(l/(u0*ur*A))    #Reluctance of iron ring\n",
      "print\"Reluctance of iron ring is =\",R,\"Ampere-turn/Wb\"\n",
      "\n",
      "phi=m/R            #Magnetic flux\n",
      "print\"Magnetic flux is =\",phi,\"Weber\"\n",
      "\n",
      "B=phi/A            #Magnetic Flux density\n",
      "print\"Magnetic flux density is =\",B,\"Weber/m^2\"\n",
      "\n",
      "H=B/(u0*ur)        #Magnetic field intensity\n",
      "print\"Magnetic field intensity is =\",H,\"Amperes/m\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "MMF of coil is = 2000 Ampere-turn\n",
        "Reluctance of iron ring is = 1250000000.0 Ampere-turn/Wb\n",
        "Magnetic flux is = 1.6e-06 Weber\n",
        "Magnetic flux density is = 0.00266666666667 Weber/m^2\n",
        "Magnetic field intensity is = 2122.06590789 Amperes/m\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.19,Page number 2-36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "u0=4*math.pi*10**-7     #Permeability in vacuum\n",
      "ur=6*10**-3         #Relative permeability of iron\n",
      "r=0.5               #radius of ring in m\n",
      "l=1*10**-2          #air gap in the ring\n",
      "A=5*10**-4          #Crosss sectional area of ring in m^2\n",
      "i=5                 #current in ampere\n",
      "N=900               #Number of turns\n",
      "\n",
      "#Calculations:\n",
      "S=(l/(u0*A))+((2*math.pi*r-l)/ur*A)     #Reluctance of iron\n",
      "print\"Reluctance of iron is =\",S,\"Ampere-turn/Wb\"\n",
      "\n",
      "m=N*i              #mmf produced\n",
      "print\"mmf produced is =\",m,\"Ampere-turn\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Reluctance of iron is = 15915494.5702 Ampere-turn/Wb\n",
        "mmf produced is = 4500 Ampere-turn\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.20,Page number 2-36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "H=5*10**3          #coercivity of bar magnet in amp/m\n",
      "l=10*10**-2        #length of solenoid in m\n",
      "N=50               #No of turns\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#We know that, H=NI/l ,hence\n",
      "I=l*H/N            #current through solenoid\n",
      "\n",
      "print\"Current through solenoid is =\",I,\"Amperes\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current through solenoid is = 10.0 Amperes\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.21,Page number 2-36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "ur=1200            #Relative permeability of medium\n",
      "V=10**-3           #volume of iron rod\n",
      "N=5*10**2          #no of turns per m\n",
      "i=0.5              #current through solenoid in amp\n",
      "\n",
      "#Calculations:\n",
      "x=ur-1             #susceptibility of the ring\n",
      "H=N*i             #Magnetisisng field\n",
      "\n",
      "#We know, x=I/H\n",
      "I=x*H              #magnetisation\n",
      "\n",
      "#Also, I=M/V , thus\n",
      "M=I*V              #magnetic moment\n",
      "print\"Magnetic moment is =\",M,\"Ampere-turn-m^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic moment is = 299.75 Ampere-turn-m^2\n"
       ]
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.22,Page number 2-37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Dta:\n",
      "ur=100            #Relative permeability of medium\n",
      "l=0.2             #length of iron rod\n",
      "d=10*10**-3       #diameter of solenoid in m\n",
      "N=300             #no of turns per m\n",
      "i=0.5             #current through solenoid in amp\n",
      "r=d/2             #radius of solenoid\n",
      "\n",
      "#Calculations:\n",
      "x=ur-1            #susceptibility of the ring\n",
      "H=N*i             #Magnetisisng field\n",
      "\n",
      "#We know, x=I/H\n",
      "I=x*H             #magnetisation\n",
      "\n",
      "V=math.pi*(r**2)*l     #volume of iron rod\n",
      "\n",
      "#Also, I=M/V , thus\n",
      "M=I*V             #magnetic moment\n",
      "print\"Magnetic moment is =\",M,\"Ampere-turn-m^2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Magnetic moment is = 0.233263254529 Ampere-turn-m^2\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.23,Page number 2-38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "l=1.2              #length of circuit in meter\n",
      "u=7.3*10**-3       #permeability of silicon sheet\n",
      "A=100              #cross sectional area in cm^2\n",
      "N=150              #No of turns\n",
      "B=0.3              #magmetic field in Wb/m^2\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#We know, B=u*H\n",
      "H=B/u              #Magnetic field strength\n",
      "\n",
      "m=H*l              #amp-turns in air gap\n",
      "\n",
      "I1=m/N             #Required current\n",
      "print\"Current required to obtain given magnetic field is =\",I1,\"Amperes\"\n",
      "\n",
      "I=I1/A             #Required current per unit area\n",
      "print\"Current required per unit area to obtain given magnetic field is =\",I,\"Amperes\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Current required to obtain given magnetic field is = 0.328767123288 Amperes\n",
        "Current required per unit area to obtain given magnetic field is = 0.00328767123288 Amperes\n"
       ]
      }
     ],
     "prompt_number": 34
    }
   ],
   "metadata": {}
  }
 ]
}