1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
|
{
"metadata": {
"celltoolbar": "Raw Cell Format",
"name": "",
"signature": "sha256:5f637d4fa0aa8bb3bc54a28134ac85a937c06f0d3a591f536de2719824a41f5c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Optical Fibre"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1,Page number 3-19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"n1=1.61 #Core index\n",
"n2=1.55 #Cladding index\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(n1**2-n2**2) #Formula\n",
"\n",
"print\"Numerical Aperture of Fibre is = \",NA\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.435430821142\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2,Page number 3-19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"n1=1.65 #Core index\n",
"n2=1.53 #Cladding index\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(n1**2-n2**2) #Formula\n",
"\n",
"print\"Numerical Aperture of Fibre is =\",NA\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.617737808459\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3,Page number 3-19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"n1=1.48 #R.I. of Core\n",
"n2=1.39 #R.I. of Cladding\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(n1**2-n2**2) #Formula to find NA\n",
"phi=math.asin(NA)*180/(3.1472) #Acceptance angle\n",
"\n",
"print\"Numerical Aperture of Fibre is =\",NA\n",
"print\"Acceptance angle of Fibre is =\",phi,\"degrees\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.508232230383\n",
"Acceptance angle of Fibre is = 30.491727191 degrees\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4,Page number 3-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given data:\n",
"u1=3.6 #Refractive Index of the Substance at 850 nm\n",
"u2=3.4 #Refractive Index of the Substance at 1300 nm\n",
"Vv=3*10**8 #Velocity of light in free space\n",
"\n",
"#Calculations:\n",
"# i)Finding wavelength at 850 nm\n",
"Vs1=Vv/u1 #Velocity of light in substance at 850 nm\n",
"print\"Velocity of light in substance at 850 nm =\" ,Vs1,\"m/sec\"\n",
"\n",
"lam1=850*10**-9/u1 #Wavelength of light in substance at 850nm\n",
"print\" Wavelength of light in substance at 850nm =\",lam1,\"m\"\n",
"\n",
"\n",
"#ii)Finding wavelength at 1300 nm\n",
"Vs2=Vv/u2 #Velocity of light in substance at 1300 nm\n",
"print\"Velocity of light in substance at 1300 nm =\",Vs2,\" m/sec\"\n",
"\n",
"lam2=1300*10**-9/u2 #Wavelength of light in substance at 1300nm\n",
"print\"Wavelength of light in substance at 1300nm =\" ,lam2,\"m \""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Velocity of light in substance at 850 nm = 83333333.3333 m/sec\n",
" Wavelength of light in substance at 850nm = 2.36111111111e-07 m\n",
"Velocity of light in substance at 1300 nm = 88235294.1176 m/sec\n",
"Wavelength of light in substance at 1300nm = 3.82352941176e-07 m \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5,Page number 3-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.5 #R.I. of Core\n",
"u2=1.45 #R.I.of Cladding\n",
"delta= (u1-u2)/u1 #Fractional Refractive index\n",
"\n",
"#Calculations:\n",
"NA=u1*sqrt(2*delta) #Formula to find NA\n",
"theta0=math.asin(NA)*180/(3.1472) #Acceptance angle\n",
"thetac=math.asin(u2/u1)*180/(3.1472) #Critical angle\n",
"\n",
"print\"Numerical Aperture of Fibre is =\",NA\n",
"print\"Acceptance angle of Fibre is =\",theta0,\"degrees\" \n",
"print\" Critical angle of Fibre is =\",thetac,\"degrees\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.387298334621\n",
"Acceptance angle of Fibre is = 22.7458994397 degrees\n",
" Critical angle of Fibre is = 75.0309676099 degrees\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6,Page number 3-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"NA=0.22 # Numerical Aperture of Fibre\n",
"delta=0.012 #Fractional index\n",
"\n",
"#Calculations:\n",
"#Delta=(u1-u2)/u1\n",
"u1=NA/math.sqrt(2*delta) #Formula\n",
"u2=u1-(u1*delta) #Formula\n",
"\n",
"print\"Refractive Index of core of fibre is =\",u1\n",
"print\"Refractive Index of cladding of fibre is =\",u2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Refractive Index of core of fibre is = 1.42009389361\n",
"Refractive Index of cladding of fibre is = 1.40305276689\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7,Page number 3-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.466 #R.I. of Core\n",
"u2=1.46 #R.I.of Cladding\n",
"V=2.4 #Cut off parameter\n",
"lamda=0.8*10**-6 #wavelength in meter\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture\n",
"print\"Numerical Aperture of Fibre is =\",NA\n",
"#(printing mistake in book)printed answer is 1.13 but correct answer is 0.13\n",
"print\"(printing mistake in book)\"\n",
"\n",
"# V = 2*3.142*a*NA / lamda\n",
"a=V*lamda/(2*3.142*NA) #core radius\n",
"print\"Core radius of Fibre is (a) =\",a,\"m\"\n",
"\n",
"#w/a= 1.1\n",
"w=1.1*a #Spot size\n",
"print\"Spot size of Fibre is =\",w,\"m\"\n",
"\n",
"theta=2*lamda*180/3.142/(3.142*w) #Divergence angle\n",
"print\"Divergence angle of Fibre is =\",theta,\"degrees\"\n",
"\n",
"w10=lamda*10/(3.142*w) #Spot size at 10 m\n",
"print\"Spot size at 10 m of Fibre is =\",w10,\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.1324990566\n",
"(printing mistake in book)\n",
"Core radius of Fibre is (a) = 2.30596263706e-06 m\n",
"Spot size of Fibre is = 2.53655890076e-06 m\n",
"Divergence angle of Fibre is = 11.5009886523 degrees\n",
"Spot size at 10 m of Fibre is = 1.00378073182 m\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8,Page number 3-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"w=98 #Spot size in meter\n",
"d=50*10**-6 #Core diameter in meter\n",
"a=d/2 #core radius\n",
"u1=1.47 #R.I. of Core\n",
"u2=1.45 #R.I.of Cladding\n",
"lamda=0.85*10**-6 #Wavlength in meter\n",
"NA=math.sqrt(u1**2-u2**2) #Formula to find NA\n",
"\n",
"#Calculations:\n",
"V=2*3.142*a*NA/lamda #cut off parameter\n",
"N=(V**2)/2 #Number of modes\n",
"\n",
"print\"Cut off parameter of Fibre is =\",V\n",
"print\"Number of modes of Fibre is =\",N\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cut off parameter of Fibre is = 44.6646240577\n",
"Number of modes of Fibre is = 997.464321107\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9,Page number 3-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.47 #R.I. of Core\n",
"u2=1.46 #R.I.of Cladding\n",
"lamda=1.3*10**-6 #wavelength in meter\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture\n",
"\n",
"#The condition for single mode is V<2.405\n",
"#2*3.142*a*NA/lamda < 2.405\n",
"\n",
"a=2.405*lamda/(2*3.142*NA) #Maximum radius of fibre\n",
"\n",
"print\"Maximum radius of Fibre is =\",a,\"meter\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum radius of Fibre is = 2.90662126448e-06 meter\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10,Page number 3-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.465 #R.I. of Core\n",
"u2=1.46 #R.I.of Cladding\n",
"lamda=1.25*10**-6 #operating wavelength\n",
"\n",
"#Calculations:\n",
"delta=(u1-u2)/u1 #Fractional Refractive index\n",
"print\"Fractional Refractive index of Fibre is =\",delta\n",
"\n",
"#For single mode propagation codition is \n",
"# a/lamda < 1.4/(3.142*sqrt(u1(u1-u2)))\n",
"\n",
"a=lamda*1.4/(3.142*u1*math.sqrt(delta)) #core radius\n",
"\n",
"u=u1-(math.sqrt(2*delta)/(2*3.142*(a/lamda))) #effective refractive index\n",
"print\"Effective Refractive index for lowest mode propagation is =\",u\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Fractional Refractive index of Fibre is = 0.00341296928328\n",
"Effective Refractive index for lowest mode propagation is = 1.46247461864\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11,Page number 3-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.54 #R.I. of Core\n",
"u2=1.5 #R.I.of Cladding\n",
"lamda=1.3*10**-6 #wavelength in meter\n",
"a=25*10**-6 #core radius in meter\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture\n",
"\n",
"V=2*3.142*a*NA/lamda #cut off parameter\n",
"print\"Cut off parameter of Fibre is =\",V\n",
"\n",
"N=(V**2)/2 #Number of modes\n",
"print\" Number of modes of Fibre is =\",N\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cut off parameter of Fibre is = 42.1404937865\n",
" Number of modes of Fibre is = 887.910608284\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11.1,Page number 3-25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.52 #R.I. of Core\n",
"u2=1.5189 #R.I.of Cladding\n",
"lamda=1.3*10**-6 #wavelength in meter\n",
"d=29*10**-6 #core diameter in meter\n",
"a=d/2\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture\n",
"V=2*3.142*a*NA/lamda #Normalised frequency\n",
"Nm=(V**2)/2 #Number of modes\n",
"\n",
"print\"Normalised frequency of Fibre is (V)=\",V\n",
"print\"The Maximum Number of modes the Fibre will support is (Nm) =\",Nm\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Normalised frequency of Fibre is (V)= 4.05242861605\n",
"The Maximum Number of modes the Fibre will support is (Nm) = 8.2110888441\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12,Page number 3-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"u1=1.5 #R.I. of Core\n",
"d=10*10**-6 #diameter of core\n",
"a=d/2 #core radius\n",
"lamda=1.3*10**-6 #wavelength\n",
"V=2.405 #cut off parameter for single mode\n",
"\n",
"#Calculations:\n",
"\n",
"#We know, V=2*3.142*a*NA/lamda\n",
"NA=V*lamda/(2*3.142*a) #Numerical Aperture\n",
"\n",
"theta=math.asin(NA)*180/3.142 #Acceptance angle\n",
"print\"Acceptance angle of Fibre is =\",theta,\"Degrees\"\n",
"\n",
"#Also, NA=u1*sqrt(2*delta)\n",
"delta=(NA/u1)**2/2 #Fractional index\n",
"print\"Maximum Fractional Refractive index of Fibre is =\",delta\n",
"\n",
"#delta=(u1-u2)/u1\n",
"u2=u1*(1-delta) #R.I.of cladding\n",
"print\"Refractive index of cladding of Fibre is =\",u2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Acceptance angle of Fibre is = 5.71002346964 Degrees\n",
"Maximum Fractional Refractive index of Fibre is = 0.00220035113094\n",
"Refractive index of cladding of Fibre is = 1.4966994733\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.13,Page number 3-23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"n1=1.5 #R.I. of core\n",
"delta=0.0005 #Fractional index difference\n",
"\n",
"#Calculations:\n",
"#(a):\n",
"#Delta=(u1-u2)/u1\n",
"n2=n1-(n1*delta) #R.I. of cladding\n",
"print\"(a)Refractive Index of cladding of fibre is =\",n2\n",
"\n",
"#(b):\n",
"phi=math.asin(n2/n1)*180/3.142 #Critical internal reflection angle\n",
"print\"(b)Critical internal reflection angle of Fibre is =\",phi,\"degrees\"\n",
"\n",
"#(c):\n",
"theta0=math.asin(math.sqrt(n1**2-n2**2))*180/3.142 #External critical Acceptance angle\n",
"print\"(c)External critical Acceptance angle of Fibre is =\",theta0,\"degrees\"\n",
"\n",
"#(d):\n",
"NA=n1*math.sqrt(2*delta) #Formula to find Numerical Aperture\n",
"print\"(d)Numerical Aperture of Fibre is =\",NA\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Refractive Index of cladding of fibre is = 1.49925\n",
"(b)Critical internal reflection angle of Fibre is = 88.1766396681 degrees\n",
"(c)External critical Acceptance angle of Fibre is = 2.71810509125 degrees\n",
"(d)Numerical Aperture of Fibre is = 0.0474341649025\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.14,Page number 3-24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"NA1=0.20 #Numerical Aperture of Fibre\n",
"n2=1.59 #R.I. of cladding\n",
"\n",
"#Calculations:\n",
"#NA=sqrt(n1**2-n2**2)\n",
"#In air, n0=1\n",
"n1=math.sqrt(NA1**2+n2**2) #R.I.of core\n",
"\n",
"#Now, in water \n",
"n0=1.33\n",
"NA2=math.sqrt(n1**2-n2**2)/n0 #Numerical Aperture in water\n",
"theta0=math.asin(NA2)*180/3.142 #Acceptance angle of fibre in water\n",
"print\"Acceptance angle of Fibre in water is =\",theta0,\"degrees\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Acceptance angle of Fibre in water is = 8.6475921767 degrees\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.15,Page number 3-24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"n1=1.45 #R.I.of core\n",
"n2=1.40 #R.I. of cladding\n",
"\n",
"#Calculations:\n",
"NA=math.sqrt(n1**2-n2**2) #Numerical Aperture\n",
"print\"Numerical Aperture of Fibre is =\",NA\n",
"\n",
"theta0=math.asin(NA)*180/3.142 #Acceptance angle of fibre\n",
"print\"Acceptance angle of Fibre is =\",theta0,\"degrees\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.377491721764\n",
"Acceptance angle of Fibre is = 22.1755250876 degrees\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.16,Page number 3-24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"NA=0.16 #Numerical Aperture of Fibre\n",
"n1=1.45 #R.I. of core\n",
"d=90*10**-6 #Core diameter\n",
"\n",
"#Calculations:\n",
"#NA=sqrt(n1**2-n2**2)\n",
"n2=math.sqrt(n1**2-NA**2) #R.I.of cladding\n",
"print\"(a)Refractive Index of cladding of fibre is =\",n2\n",
"\n",
"theta0=math.asin(NA)*180/3.142 #Acceptance angle of fibre\n",
"print\"(b)Acceptance angle of Fibre is =\",theta0,\"degrees\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Refractive Index of cladding of fibre is = 1.44114537782\n",
"(b)Acceptance angle of Fibre is = 9.20570258795 degrees\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.17,Page number 3-25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given Data:\n",
"n1=1.48 #R.I. of core\n",
"delta=0.055 #Realtive R.I.\n",
"lamda=1*10**-6 #Wavelength of light\n",
"a=50*10**-6 #core radius\n",
"\n",
"#Calculations:\n",
"#Delta=(u1-u2)/u1\n",
"n2=n1-(n1*delta) #R.I. of cladding\n",
"NA=n1*math.sqrt(2*delta) #Formula to find Numerical Aperture\n",
"print\"Numerical Aperture of Fibre is =\",NA\n",
"\n",
"\n",
"theta0=math.asin(NA)*180/3.142 #Acceptance angle of fibre\n",
"print\"Acceptance angle of Fibre is =\",theta0,\"degrees\"\n",
"\n",
"V=2*3.142*a*NA/lamda #V number\n",
"N=(V**2)/2 #Number of guided modes\n",
"\n",
"#In book,instead of NA , value of delta is taken into calculation.\n",
"#Thus there is calculation mistake in values of V and N.\n",
"\n",
"print\"V number of Fibre is =\",V\n",
"print\"Number of guided mode of Fibre is =\",N\n",
"print\"(Calculation mistake in book)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numerical Aperture of Fibre is = 0.490860468973\n",
"Acceptance angle of Fibre is = 29.3933421943 degrees\n",
"V number of Fibre is = 154.228359351\n",
"Number of guided mode of Fibre is = 11893.1934141\n",
"(Calculation mistake in book)\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|