summaryrefslogtreecommitdiff
path: root/Applied_Physics-II_by_Dr._I._A._Shaikh/chapter5.ipynb
blob: e9d81103b31b649c97f0671154257c17ca7ee73d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
{
 "metadata": {
  "celltoolbar": "Raw Cell Format",
  "name": "",
  "signature": "sha256:fec7a7bbab2881090f60069cf3d4c856415ca45a1545225541a225f28ce72b8e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5: Foundations of Quantum Mechanics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.1,Page number 5-23"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=6.68*10**-27       #mass of alpha particle\n",
      "V=30*10**3           #potential difference\n",
      "e=1.6*10**-19        #charge of an electron\n",
      "q=2*e                #Charge of alpha particle\n",
      "h=6.63*10**-34       #Planck's constant\n",
      "\n",
      "#Calculations:\n",
      "lamda=h/math.sqrt(2*m*q*V)     #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with alpha particle is =\" ,lamda,\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de Broglie wavelength associated with alpha particle is = 5.85429607723e-14 m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2,Page number 5-23"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=1                  #mass of given particle in kg\n",
      "h=6.63*10**-34       #Planck's constant\n",
      "v=1*10**3            #velocity of particle\n",
      "\n",
      "#Calculations:\n",
      "lamda=h/(m*v)         #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with particle is =\",lamda,\"m\"\n",
      "print\"This wavelength is too small for any practical significance.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de Broglie wavelength associated with particle is = 6.63e-37 m\n",
        "This wavelength is too small for any practical significance.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3,Page number 5-24"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m1=40*10**-3         #mass of bullet in kg\n",
      "m2=9.1*10**-31       #mass of electron in kg\n",
      "h=6.63*10**-34       #Planck's constant\n",
      "v=1100              #velocity of bullet and electron\n",
      "\n",
      "#Calculations:\n",
      "lamda1=h/(m1*v)        #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with bullet is =\",lamda1,\"m\"\n",
      "\n",
      "lamda2=h/(m2*v)        #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with electron is =\",lamda2,\"m\"\n",
      "\n",
      "print\"Wavelength of bullet is too small.Hence it can not be measured with help of diffraction effect.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " de Broglie wavelength associated with bullet is = 1.50681818182e-35 m\n",
        "de Broglie wavelength associated with electron is = 6.62337662338e-07 m\n",
        "Wavelength of bullet is too small.Hence it can not be measured with help of diffraction effect.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4,Page number 5-24"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "V=100            #potential difference\n",
      "d=2.15*10**-10   #lattice spacing\n",
      "\n",
      "#Calculations:\n",
      "lamda=12.26*10**-10/(math.sqrt(V))          #wavelength associated with electron in meter\n",
      "\n",
      "#using bragg's law for first order  lamda=2d sin(theta)\n",
      "theta=math.degrees(math.asin(lamda/(2*d)))      #glancing angle in degrees\n",
      "print\"Glancing angle at which first reflection occurs is =\",theta,\"Degrees\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Glancing angle at which first reflection occurs is = 16.5657992687 Degrees\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5,Page number 5-25"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "mn=1.674*10**-27     #mass of neutron\n",
      "h=6.63*10**-34       #Planck's constant\n",
      "lamda=1*10**-10      #wavelength of neutron\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#we know,  lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
      "E1=h**2/(2*mn*lamda**2)   #Energy of neutron in joules\n",
      "E=E1/(1.6*10**-19)        #Energy of neutron in electron-Volts\n",
      "\n",
      "print\"Energy of neutron is =\",E,\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of neutron is = 0.0820581317204 eV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.6,Page number 5-25"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "mn=1.67*10**-27      #mass of neutron\n",
      "h=6.6*10**-34        #Planck's constant\n",
      "lamda=3*10**-10        #wavelength of neutron\n",
      "d=3.036*10**-10      #lattice spacing\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#we know,  lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
      "E1=h**2/(2*mn*lamda**2)  #Energy of neutron in joules\n",
      "E=E1/(1.6*10**-19)    # Energy of neutron in electron-Volts\n",
      "print\"Energy of neutron is =\",E,\"eV\"\n",
      "\n",
      "#using bragg's law for first order  lamda=2d sin(theta)\n",
      "theta=math.degrees(math.asin(lamda/(2*d)))      #glancing angle in degrees\n",
      "print\" Glancing angle at which first orde reflection occurs is =\",theta,\"Degrees\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of neutron is = 0.00905688622754 eV\n",
        " Glancing angle at which first orde reflection occurs is = 29.6085193042 Degrees\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.7,Page number 5-26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=9.108*10**-31       #mass of electron\n",
      "h=6.625*10**-34       #Planck's constant\n",
      "lamda=5*10**-7          #wavelength of electron\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#we know,  lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
      "E1=h**2/(2*m*lamda**2)     #Energy of electron in joules\n",
      "E=E1/(1.6*10**-19)      #Energy of electron in electron-Volts\n",
      "print\"Energy of electron is =\",E,\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of electron is = 6.02363650088e-06 eV\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.8,Page number 5-27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "mn=1.676*10**-27        #mass of neutron\n",
      "me=9.1*10**-31          #mass of electron\n",
      "h=6.625*10**-34         #Planck's constant\n",
      "\n",
      "#Calculations:\n",
      "#Part 1:\n",
      "En1=0.025              #Energy in eV of neutron\n",
      "En=En1*(1.6*10**-19)   #Energy in joules\n",
      "\n",
      "lamda1=h/math.sqrt(2*mn*En)     #wavelength of a beam of neutron\n",
      "print\"wavelength of a beam of neutron is =\",lamda1,\"m\"\n",
      "\n",
      "#Part 2:\n",
      "lamda2=2*10**-10            #wavelength of electron and photon\n",
      "\n",
      "#//we know,  lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
      "Ee1=h**2/(2*me*lamda2**2)     #Energy of electron in joules\n",
      "Ee=Ee1/(1.6*10**-19)          #Energy of electron in electron-Volts\n",
      "print\"Energy of electron is =\",Ee,\"eV\"\n",
      "\n",
      "p1=h/lamda2               #momentum of electron\n",
      "print\" Momentum of electron is =\",p1,\"kg.m/s\"\n",
      "\n",
      "C=3*10**8                 #Velocity of light\n",
      "Ep=h*C/lamda2             #Energy of photon in joules\n",
      "print\"Energy of photon is =\",Ep,\"Joules\"\n",
      "\n",
      "p2=h/lamda2              #momentum of photon\n",
      "print\"Momentum of photon is =\",p2,\"kg.m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength of a beam of neutron is = 1.80927208246e-10 m\n",
        "Energy of electron is = 37.6808250343 eV\n",
        " Momentum of electron is = 3.3125e-24 kg.m/s\n",
        "Energy of photon is = 9.9375e-16 Joules\n",
        "Momentum of photon is = 3.3125e-24 kg.m/s\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.9,Page number 5-28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given data:\n",
      "#We have alpha particle,neutron,proton and electron.\n",
      "\n",
      "#To find: shortest wavelength\n",
      "\n",
      "print\"We know, lamda=h/sqrt(2*m*E)     #de Broglie wavelength\"\n",
      "\n",
      "#Wavelength is inversely proportional to mass of particle for constant energy\n",
      "print\"i.e., Wavelength is inversely proportional to mass of particle for constant energy. \"\n",
      "\n",
      "print\"We have alpha particle,neutron,proton and electron.\"\n",
      "\n",
      "#AS,alpha particle has highest mass.Thus it will have shortest wavelength.\n",
      "print\"Out of above, alpha particle has highest mass.\"\n",
      "\n",
      "print\"Hence it will have shortest wavelength.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "We know, lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
        "i.e., Wavelength is inversely proportional to mass of particle for constant energy. \n",
        "We have alpha particle,neutron,proton and electron.\n",
        "Out of above, alpha particle has highest mass.\n",
        "Hence it will have shortest wavelength.\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.10,Page number 5-28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "me=9.108*10**-31        # mass of electron\n",
      "mp=1.66*10**-27         # bmass of proton\n",
      "h=6.625*10**-34         # Planck's constant\n",
      "lamda=1*10**-10         # wavelength of electron and proton\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#we know,  lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
      "Ee1=h**2/(2*me*lamda**2)           #Energy of electron in joules\n",
      "Ee=Ee1/(1.6*10**-19)               #Energy of electron in electron-Volts\n",
      "print\"Energy of electron is =\",Ee,\"eV\"\n",
      "\n",
      "Ep1=h**2/(2*mp*lamda**2)      #Energy of photon in joules\n",
      "Ep=Ep1/(1.6*10**-19)          #Energy of photon in electron-Volts\n",
      "print\"Energy of photon is =\",Ep,\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of electron is = 150.590912522 eV\n",
        "Energy of photon is = 0.0826254235693 eV\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.11,Page number 5-29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m1=50*10**-9         #mass of particle in kg\n",
      "m2=9.1*10**-31       #mass of electron in kg\n",
      "h=6.625*10**-34      #Planck's constant\n",
      "v1=1                #velocity of particle\n",
      "v2=3*10**6           #velocity of electron\n",
      "\n",
      "#Calculations:\n",
      "lamda1=h/(m1*v1)*10**10        #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with particle is =\",lamda1,\"Angstrom\"\n",
      "\n",
      "lamda2=h/(m2*v2)*10**10        #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with electron is =\",lamda2,\"Angstrom\"\n",
      "\n",
      "print\"Wavelength of electron is measurable.\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de Broglie wavelength associated with particle is = 1.325e-16 Angstrom\n",
        "de Broglie wavelength associated with electron is = 2.42673992674 Angstrom\n",
        "Wavelength of electron is measurable.\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.12,Page number 5-29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "me=9.1*10**-31           #mass of electron in kg\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "E1=2*10**3              #Energy in eV of electron\n",
      "E=E1*(1.6*10**-19)      #Energy in joules\n",
      " \n",
      "lamda=h/math.sqrt(2*me*E)      #wavelength of electron\n",
      "print\"Wavelength of electron is =\",lamda,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Wavelength of electron is = 2.7472794985e-11 m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.13,Page number 5-30"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "me=9.1*10**-31            #mass of electron\n",
      "h=6.63*10**-34            #Planck's constant\n",
      "lamda=2*10**-10           #wavelength of electron and photon\n",
      "\n",
      "#Calculations:\n",
      "p1=h/lamda                #momentum of electron\n",
      "print\"Momentum of electron is =\",p1,\"kg.m/s\"\n",
      "\n",
      "Ee=p1**2/(2*me)          #Energy of electron in joules\n",
      "print\"Energy of electron is =\",Ee,\"Joules\"\n",
      "\n",
      "p2=h/lamda                #momentum of photon\n",
      "print\"Momentum of photon is =\",p2,\"kg.m/s\"\n",
      "\n",
      "c=3*10**8                #Velocity of light\n",
      "Ep=h*c/lamda             #Energy of photon in joules\n",
      "print\"Energy of photon is =\",Ep,\"Joules\"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Momentum of electron is = 3.315e-24 kg.m/s\n",
        "Energy of electron is = 6.03803571429e-18 Joules\n",
        "Momentum of photon is = 3.315e-24 kg.m/s\n",
        "Energy of photon is = 9.945e-16 Joules\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14,Page number 5-31"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=1.676*10**-27            #mass of neutron\n",
      "h=6.625*10**-34            #Planck's constant\n",
      "lamda=1*10**-10            #wavelength of neutron\n",
      "\n",
      "#Calculations:\n",
      "C=3*10**8                 #Velocity of light\n",
      "Ep1=h*C/lamda             #Energy of photon in joules\n",
      "E1=Ep1/(1.6*10**-19)      #Energy of photon in electron-Volts\n",
      "print\"Energy of photon is =\",E1,\"eV\"\n",
      "\n",
      "#we know,  lamda=h/sqrt(2*m*E)     #de Broglie wavelength\n",
      "En1=h**2/(2*m*lamda**2)     #Energy of neutron in joules\n",
      "E2=En1/(1.6*10**-19)     #Energy of neutron in electron-Volts\n",
      "print\"Energy of neutron is =\",E2,\"eV\"\n",
      "\n",
      "R=E1/E2                 #Ratio of energies of proton to neutron\n",
      "print\"Ratio of energies of proton to neutron is =\",R\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of photon is = 12421.875 eV\n",
        "Energy of neutron is = 0.0818366367094 eV\n",
        "Ratio of energies of proton to neutron is = 151788.679245\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Example 5.14.1,Page number 5-36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "v=900                  #velocity of electron in m/s\n",
      "delv=v*0.001/100       #uncertainity in velocity\n",
      "h=6.63*10**-34         #Planck's constant\n",
      "m=9.1*10**-31           #mass of an electron\n",
      "\n",
      "#Calculations:\n",
      "delp=m*delv            #uncertainity in the measured values of momentum\n",
      "\n",
      "#using heisenberg's uncertainity formula\n",
      "delx=h/(2*3.142*delp)    #uncertainity in its position\n",
      "print\"Uncertainity with which position of electron can be located is >=\",delx,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Uncertainity with which position of electron can be located is >= 0.0128823012337 m\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14.2,Page number 5-37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=1.6*10**-27        #mass of proton in kg\n",
      "h=6.63*10**-34       #Planck's constant\n",
      "v=3./20*10**8         #velocity of particle\n",
      "\n",
      "#Calculations:\n",
      "lamda=h/(m*v)        #de Broglie wavelength\n",
      "print\"de Broglie wavelength associated with proton is =\",lamda,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de Broglie wavelength associated with proton is = 2.7625e-14 m\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14.3,Page number 5-37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=1.676*10**-27        #mass of neutron\n",
      "h=6.634*10**-34        #Planck's constant\n",
      "\n",
      "#Calculations:\n",
      "E1=0.025              #Energy in eV of neutron\n",
      "E=E1*(1.6*10**-19)    #Energy in joules\n",
      "#As E=m*v**2/2\n",
      "v=math.sqrt(2*E/m)        #Velocity of neutron beam\n",
      "\n",
      "lamda=h/(m*v)          #wavelength of a beam of neutron\n",
      "print\"wavelength of a beam of neutron is =\",lamda,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength of a beam of neutron is = 1.81172996152e-10 m\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14.4,Page number 5-37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "delx=10*10**-9          #uncertainity in position of electron\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "m=9.1*10**-31           #mass of an electron\n",
      "E=10**3*1.6*10**-19      #Energy of electron in joules\n",
      "\n",
      "#Calculations:\n",
      "p=math.sqrt(2*m*E)          #momentum of electron\n",
      "#using heisenberg's uncertainity formula\n",
      "delp=h/(2*math.pi*delx)    #uncertainity in the momentum\n",
      "\n",
      "P=delp/p*100           #percentage of uncertainity in momentum\n",
      "print\"Percentage of uncertainity in momentum of electron is =\",P,\"percent\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Percentage of uncertainity in momentum of electron is = 0.0618355139385 percent\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.15,Page number 5-31"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=1.676*10**-27          #mass of neutron\n",
      "h=6.63*10**-34           #Planck's constant\n",
      "lamda=2*10**-12            #wavelength of neutron\n",
      "c=3*10**8                #Velocity of light\n",
      "\n",
      "#Calculations:\n",
      "p=h/lamda                 #momentum of neutron\n",
      "KE=p**2/(2*m)            #Kinetic Energy of neutron in joules\n",
      "print\"Kinetic Energy of electron is =\",KE,\"Joules\"\n",
      "\n",
      "#velocity of particle is same as group velocity. Thus,\n",
      "vg=p/m                  #group velocity\n",
      "print\"group velocity of neutron is =\",vg,\"m/s\"\n",
      "\n",
      "#using, vg*vp=c**2\n",
      "vp=c**2/vg               #phase velocity\n",
      "print\" phase velocity of neutron is =\",vp,\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Kinetic Energy of electron is = 3.27840841289e-17 Joules\n",
        "group velocity of neutron is = 197792.362768 m/s\n",
        " phase velocity of neutron is = 4.55022624434e+11 m/s\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.16,Page number 5-32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "m=1.157*10**-30         #mass of particle in kg\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "c=3*10**8               #Velocity of light\n",
      "\n",
      "#Calculations:\n",
      "E1=80                  #Energy in eV of particle\n",
      "E=E1*(1.6*10**-19)     #Energy in joules\n",
      " \n",
      "lamda=h/math.sqrt(2*m*E)     #wavelength of particle\n",
      "print\"Wavelength of particle is =\",lamda,\"m\"\n",
      "\n",
      "#Now,\n",
      "vg=h/(lamda*m)          #group velocity\n",
      "print\"Group velocity of particle is =\",vg,\"m/s\"\n",
      "\n",
      "#using, vg*vp=c**2\n",
      "vp=c**2/vg              #phase velocity\n",
      "print\"Phase velocity of particle is =\",vp,\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Wavelength of particle is = 1.21822320075e-10 m\n",
        "Group velocity of particle is = 4703848.2563 m/s\n",
        "Phase velocity of particle is = 19133270270.7 m/s\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.17,Page number 5-33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "v=400                #velocity of electron in m/s\n",
      "delv=0.01/100       #uncertainity in velocity\n",
      "h=6.63*10**-34       #Planck's constant\n",
      "m=9.11*10**-31       #mass of an electron\n",
      "\n",
      "#Calculations:\n",
      "p=m*v                #momentum of an electron\n",
      "delp=p*delv          #uncertainity in the measured values of momentum\n",
      "\n",
      "#using heisenberg's uncertainity formula\n",
      "delx=h/(2*math.pi*delp)    #accuracy in its position\n",
      "print\"Accuracy in its position is >=\",delx,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Accuracy in its position is >= 0.00289571150576 m\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.18,Page number 5-33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Given Data:\n",
      "delx=10**-8             #maximum uncertainity in position of electron\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "m=9.1*10**-31           #mass of an electron\n",
      "\n",
      "#Calculations:\n",
      "#using heisenberg's uncertainity formula\n",
      "delp=h/(2*math.pi*delx)    #minimum uncertainity in the measured values of momentum\n",
      "\n",
      "delv=delp/m            #minimum uncertainity in the velocity of an electron\n",
      "print\"Minimum uncertainity in the velocity of an electron is =\",delv,\"m/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Minimum uncertainity in the velocity of an electron is = 11595.5744253 m/s\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.19,Page number 5-34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "delv=2*10**4            #uncertainity in velocity\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "m=9.1*10**-31           #mass of an electron\n",
      "\n",
      "#Calculations:\n",
      "delp=m*delv             #uncertainity in the measured values of momentum\n",
      "\n",
      "#using heisenberg's uncertainity formula\n",
      "delx=h/(2*math.pi*delp)    #accuracy in its position\n",
      "print\"Minimum space required by electron to be confined in an atom is >=\",delx,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Minimum space required by electron to be confined in an atom is >= 5.79778721263e-09 m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.20,Page number 5-34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "delt=1.4*10**-10        #uncertainity in time spent by nucleus in excited state\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "\n",
      "#Calculations:\n",
      "\n",
      "#using, delE*delt>= h/(2*math.pi)\n",
      "delE1= h/(2*math.pi*delt)       #uncertaininty in its energy in excited state in joules\n",
      "delE=delE1/(1.6*10**-19)     #uncertaininty in its energy in excited state in eV\n",
      "print\"Uncertaininty in its energy in excited state is >=\",delE,\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Uncertaininty in its energy in excited state is >= 4.71070211026e-06 eV\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.21,Page number 5-35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "a=2*10**-10             #width of potential well in m\n",
      "h=6.63*10**-34          #Planck's constant\n",
      "m=9.1*10**-31           #mass of an electron\n",
      "\n",
      "#Calculations:\n",
      "#we know equation for energy of an electron\n",
      "n0=1\n",
      "E01=n0**2*h**2/(8*m*a**2)   #Energy in ground state\n",
      "E0=E01/(1.6*10**-19)      #Energy in eV\n",
      "print\"Energy of an electron in ground state is=\",E0,\"eV\"\n",
      "\n",
      "n1=2\n",
      "E11=n1**2*h**2/(8*m*a**2)  #Energy in first excited state\n",
      "E1=E11/(1.6*10**-19)      #Energy in eV\n",
      "print\" Energy of an electron in first excited state is=\",E1,\"eV\"\n",
      "\n",
      "\n",
      "n2=3\n",
      "E21=n2**2*h**2/(8*m*a**2)   #Energy in second excited state\n",
      "E2=E21/(1.6*10**-19)      #Energy in eV\n",
      "print\"Energy of an electron in second excited state is=\",E2,\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of an electron in ground state is= 9.43443080357 eV\n",
        " Energy of an electron in first excited state is= 37.7377232143 eV\n",
        "Energy of an electron in second excited state is= 84.9098772321 eV\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.22,Page number 5-36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "a=25*10**-10               #width of well\n",
      "delx=5*10**-10             #uncertainity in position of particle\n",
      "n=1                        #ground state\n",
      "\n",
      "#calculation:\n",
      "x1=a/2\n",
      "psi1=math.sqrt(2/a)*math.sin(n*math.pi/a*x1)\n",
      "P1=(psi1**2)*delx            #Probability of finding particle at distance of x1\n",
      "print\"Probability of finding particle at a distance of x1 is =\",P1\n",
      "\n",
      "x2=a/3\n",
      "psi2=math.sqrt(2/a)*math.sin(n*math.pi/a*x2)\n",
      "P2=(psi2**2)*delx             #Probability of finding particle at distance of x2\n",
      "print\"Probability of finding particle at a distance of x2 is =\",P2\n",
      "print\"(There is print mistake in book).\"\n",
      "\n",
      "x3=a\n",
      "psi3=math.sqrt(2/a)*math.sin(n*math.pi/a*x3)\n",
      "P3=(psi3**2)*delx             #Probability of finding particle at distance of x3\n",
      "print\"Probability of finding particle at a distance of x3 is =\",P3\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Probability of finding particle at a distance of x1 is = 0.4\n",
        "Probability of finding particle at a distance of x2 is = 0.3\n",
        "(There is print mistake in book).\n",
        "Probability of finding particle at a distance of x3 is = 5.99903913065e-33\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}