1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 8: Helical Antennas<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 8-5.1, Page number: 309<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"\n",
"#Variable declaration\n",
"w = 5 #Width of flattened tubing at termination (mm)\n",
"Er = 2.7 #Relative permittivity of the sheet\n",
"Z0 = 50 #Characteristic impdence of the sheet\n",
"\n",
"#Calculation\n",
"h = w/((377/(sqrt(Er)*Z0))-2)\n",
"\n",
"#Result\n",
"print \"The required thickness of the polystyrene sheet is\", round(h,1),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required thickness of the polystyrene sheet is 1.9 mm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 8-5.2, Page number:315<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt, log10\n",
"\n",
"#Variable declaration\n",
"n = 16.0 #Number of turns (unitless)\n",
"C = 1 #Circumference (lambda)\n",
"S = 0.25 #Turn Spacing (lambda)\n",
"\n",
"#Calculation\n",
"hpbw = 52/(C*sqrt(n*S)) #Half power beamwidth (degrees)\n",
"ax_rat = (2*n + 1)/(2*n) #Axial ratio (unitless)\n",
"gain = 12*(C**2)*n*S #Gain of antenna (unitless)\n",
"gain_db = 10*log10(gain) #Gain of antenna (in dBi)\n",
"\n",
"print \"The half power beam width is\", hpbw, \"degrees\"\n",
"print \"The axial ratio is\", round(ax_rat,2)\n",
"print \"The gain is\", gain,\"or\",round(gain_db,1),\"dBi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The half power beam width is 26.0 degrees\n",
"The axial ratio is 1.03\n",
"The gain is 48.0 or 16.8 dBi\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 8-5.3, Page number:316<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, sqrt, log10\n",
"\n",
"#Variable declaration\n",
"n = 10.0 #Number of turns (unitless)\n",
"S = 0.236 #Spacing between turns (lambda)\n",
"n_a = 4.0 #Number of helical antennas in the array (unitless)\n",
"\n",
"#Calculation\n",
"D = 12*n*S #Directivity of a single antenna(unitless)\n",
"Ae = D/(4*pi) #Effective aperture (lambda^2)\n",
"\n",
"A = sqrt(Ae) #Area of square/spacing between helixes (lambda)\n",
"Ae_total = Ae*n_a #Total effective aperture (lambda^2)\n",
"D_array = (4*pi*Ae_total) #Directivity of the array (unitless)\n",
"D_array_db = 10*log10(D_array) #Direcitivity of the array (dBi)\n",
"\n",
"#Result\n",
"print \"The best spacing between the helixes is\", round(A,1), \"lambda\"\n",
"print \"The directivity of the array is\", round(D_array),\"or\",round(D_array_db,1),\"dBi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The best spacing between the helixes is 1.5 lambda\n",
"The directivity of the array is 113.0 or 20.5 dBi\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 8-16.1, Page number:347<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"gain = 24.0 #Gain (dB)\n",
"alpha = 12.7 #Pitch angle (degrees)\n",
"c_lambda = 1.05 #Circumference (lambda)\n",
"s_lambda = 0.236 #Spacing between turns (lambda)\n",
"\n",
"#Calculation\n",
"D = 10**(gain/10) #Directivity (unitless)\n",
"L = D/(12*(c_lambda**2)) #Helix length (lambda)\n",
"n = L/s_lambda #Number of turns (unitless)\n",
"D = D/4 #Directivity for four 20-turn helixes(unitless)\n",
"Ae = D/(4*pi) #Effective aperture of each helix (lambda^2)\n",
"\n",
"#Result\n",
"print \"The Axial length is\", round(L),\"lambda\"\n",
"print \"The number of turns for the axial length is\",round(n)\n",
"print \"The effective aperture for 20 turns is\",round(Ae),\"lambda^2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Axial length is 19.0 lambda\n",
"The number of turns for the axial length is 80.0\n",
"The effective aperture for 20 turns is 5.0 lambda^2\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|