1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 7: Loop, Slot and Horn Antennas<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-8.1, Page number: 256<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt,pi,sin,log10\n",
"\n",
"#Variable declaration\n",
"C_lambda = 0.1*pi #Circumference (lambda)\n",
"R_m = 1.6 #Mutual resistance of two loops (ohm)\n",
"theta1 = 90*pi/180 #Angle of radiation (radians)\n",
"theta2 = 2*pi/10 #Angle of radiation (radians)\n",
"\n",
"#Calculation\n",
"Rr = 197*(C_lambda)**4 #Self resistance of loop (ohm)\n",
"D1 = (1.5)*(sin(theta1))**2 #Direcivity of loop alone (unitless)\n",
"D1_db = 10*log10(D1) #Directivity of loop alone (dBi)\n",
"D2 = 1.5*(2*sqrt(Rr/(Rr-R_m))*sin(theta2))**2\n",
" #Directivity of loop with ground plane (unitless)\n",
"D2_db = 10*log10(D2) #Direcitivy of loop with ground plane (dBi)\n",
"\n",
"#Result\n",
"print \"The directivity of loop alone is %.2f or %.2f dBi\" % (D1,D1_db)\n",
"print \"\"\"The direcitivy of loop with ground plane is %.2f or %.0f dBi\n",
" \"\"\" %(D2,D2_db)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The directivity of loop alone is 1.50 or 1.76 dBi\n",
"The direcitivy of loop with ground plane is 12.47 or 11 dBi\n",
" \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-8.2, Page number:257<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt, sin, pi, log10\n",
"\n",
"#Variable declaration\n",
"Rr = 197.0 #self resistance of loop (ohm)\n",
"Rm = 157.0 #mutual resistance of two loops (ohm)\n",
"theta = 2*pi/10 #Angle of radiation (radians)\n",
"\n",
"#Calculation\n",
"D = 1.5*(2*sqrt(Rr/(Rr-Rm))*sin(theta))**2 #Directivity (unitless)\n",
"D_db = 10*log10(D) #Directivity (dBi)\n",
"\n",
"#Result\n",
"print \"The direcitivy is %.1f or %.1f dBi\" % (D,D_db)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The direcitivy is 10.2 or 10.1 dBi\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-11.1, Page number: 261<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, log10\n",
"\n",
"#Variable declaration\n",
"c = pi #Circumference (m)\n",
"f1 = 1 #Frequency (MHz)\n",
"f2 = 10 #Frequency (MHz)\n",
"d = 10e-3 #Diameter of copper wire (m)\n",
"\n",
"#Calcalation\n",
"RL_Rr1 = 3430/((c**3)*(f1**3.5)*d) \n",
"RL_Rr2 = 3430/((c**3)*(f2**3.5)*d)\n",
" #Ratio of Loss resistance and radiation resistance (unitless\n",
" \n",
"k1 = 1/(1+RL_Rr1) #Radiation efficiency (unitless)\n",
"k_db1 = 10*log10(k1) #Radiation efficiency (in dB)\n",
"k2 = 1/(1+RL_Rr2) #Radiation efficiency (unitless)\n",
"k_db2 = 10*log10(k2) #Radiation efficiency (in dB)\n",
"\n",
"#Result\n",
"print \"The radiation effiency for 1 MHz is %.1ef or %.1f dB\" % (k1, k_db1)\n",
"print \"The radiation effiency for 10 MHz is %.2f or %.1f dB\" % (k2, k_db2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radiation effiency for 1 MHz is 9.0e-05f or -40.4 dB\n",
"The radiation effiency for 10 MHz is 0.22 or -6.5 dB\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-11.2, Page number: 264</h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi,sqrt\n",
"\n",
"#Variable declaration\n",
"n = 10 #Number of turns (unitless)\n",
"dia = 1e-3 #Diameter of copper wire (m)\n",
"dia_rod = 1e-2 #Diameter of ferrite rod (m)\n",
"len_rod = 10e-2 #Length of ferrite rod (m)\n",
"mu_r = 250 - 2.5j #Relative permeability (unitless)\n",
"mu_er = 50 #Efeective relative permeability (unitless)\n",
"f = 1e6 #Frequency (Hz)\n",
"c = 3e8 #Speed of light (m/s)\n",
"mu_0 = pi*4e-7 #Absolute permeability (H/m)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"radius = dia_rod/2\n",
"C_l = (2*pi*radius)/(wave_lt) #Circumference of loop (m)\n",
"Rr = 197*(mu_er**2)*(n**2)*(C_l**4) #Radiation resistance (ohm)\n",
"Rf = 2*pi*f*mu_er*(mu_r.imag/mu_r.real)*mu_0*(n**2)*(pi*radius**2)/len_rod #Loss resistance(ohm)\n",
"cond = 1/((7e-5**2)*f*pi*mu_er) #Conductivity (S/m)\n",
"delta = 1/(sqrt(f*pi*mu_er*cond)) #Depth of penetration(m)\n",
"\n",
"RL = n*(C_l/dia)*sqrt((f*mu_0)/(pi*cond)) #Ohmic resistance (ohm)\n",
"k = Rr/(RL+abs(Rf)) #Radiation efficiency (unitless)\n",
"\n",
"L = mu_er*(n**2)*(radius**2)*mu_0/len_rod #Inductance (H)\n",
"Q = 2*pi*f*L/(abs(Rf) + Rr + RL) #Ratio of energy stored to energy lost per cycle (unitless)\n",
"\n",
"fHP = f/Q #Bandwidth at half power (Hz)\n",
"\n",
"\n",
"#Results\n",
"print \"The radiation efficiency is \", round(k,11)\n",
"print \"The value of Q is \", round(Q,3)\n",
"print \"The half-power bandwidth is\", round(fHP), \"Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radiation efficiency is 6.65e-09\n",
"The value of Q is 11.076\n",
"The half-power bandwidth is 90289.0 Hz\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-17.1, Page number: 280<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"\n",
"#Variable declaration\n",
"Z0 = 376.7 #Intrinsic impdence of free space (ohm)\n",
"Zd = 73 + 42.5j #Impedence of infinitesimally thin lambda/2 antenna (ohm)\n",
"\n",
"#Calculation\n",
"Z1 = (Z0**2)/(4*Zd) #Terminal impedence of the lambda/2 slot antenna (ohm)\n",
"\n",
"#Result\n",
"print \"The terminal impedence of the thin lambda/2 slot antenna is\", np.around(Z1), \"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The terminal impedence of the thin lambda/2 slot antenna is "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(363-211j) ohm\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-17.2, Page number: 280<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Zd = 67 #Terminal impedence of cylindrical antenna (ohm)\n",
"Z0 = 376.7 #Intrinsic impedence of free space (ohm)\n",
"L = 0.475 #Length of complementary slot (lambda)\n",
"\n",
"#Calculation\n",
"Z1 = Z0**2/(4*Zd) #Terminal resistance of complementary slot (ohm)\n",
"w = 2*L/100 #Width of complementary slot (lambda)\n",
"\n",
"#Result\n",
"print \"The terminal resistance of the complementary slot is\", round(Z1), \"ohm\"\n",
"print \"The width of the complementary slot is\", w, \"lambda\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The terminal resistance of the complementary slot is 529.0 ohm\n",
"The width of the complementary slot is 0.0095 lambda\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-17.3, Page number: 281<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Zd = 710 #Terminal impdence of cylindrical dipole\n",
"Z0 = 376.7 #Intrinsic impedence of free space (ohm)\n",
"\n",
"#Calculation\n",
"Z1 = Z0**2/(4*Zd) #Terminal resistance of complementary slot (ohm)\n",
"\n",
"#Result\n",
"print \"The terminal resistance of the complementary slot is\", round(Z1),\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The terminal resistance of the complementary slot is 50.0 ohm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 7-20.1, Page number 288<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"delta_e = 0.2 #path length difference in E-plane (lambda)\n",
"delta_h = 0.375 #path length difference in H-plane (lambda)\n",
"a_e = 10 #E-plane aperture (lambda)\n",
"\n",
"\n",
"#Calculation\n",
"L = a_e**2/(8*delta_e) #Horn length(lambda)\n",
"theta_e = 2*math.atan2(a_e,2*L)*180/math.pi #Flare angle in E-plane (degrees)\n",
"theta_h = 2*math.acos(L/(L+delta_h))*180/math.pi\n",
" #Flare angle in the H-plane (degrees)\n",
"a_h = 2*L*math.tan(theta_h/2*math.pi/180) #H-plane aperture (lambda)\n",
"\n",
"hpbw_e = 56/a_e #Half power beamwidth in E-plane (degrees)\n",
"hpbw_h = 67/a_h #Half power beamwidth in H-plane (degrees)\n",
"\n",
"D = 10*math.log10(7.5*a_e*a_h) #Directivity (dB)\n",
"\n",
"#Result\n",
"print \"The length of the pyramidal horn is\", L,\"lambda\"\n",
"print \"The flare angles in E-plane and H-plane are\", round(theta_e,1),\"and\", round(theta_h,2), \"degrees\"\n",
"print \"The H-plane aperture is\", round(a_h,1), \"lambda\"\n",
"print \"The Half power beamwidths in E-plane and H-plane are\", hpbw_e,\"&\",round(hpbw_h,1),\\\n",
"\"degrees\"\n",
"print \"The direcivity is\", round(D,1),\"dBi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The length of the pyramidal horn is 62.5 lambda\n",
"The flare angles in E-plane and H-plane are 9.1 and 12.52 degrees\n",
"The H-plane aperture is 13.7 lambda\n",
"The Half power beamwidths in E-plane and H-plane are 5 & 4.9 degrees\n",
"The direcivity is 30.1 dBi\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|