1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 3: The Antenna Family<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 3-3.2, Page number: 58<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Z_0 = 377 #Intrinsic impedence of free space(ohm)\n",
"Z_d = 710 +0j #Terminal impedence of dipole cylinder (ohm)\n",
"\n",
"#Calculation\n",
"Z_s = (Z_0**2)/(4*Z_d) #Terminal impedence of the slot (ohm)\n",
"\n",
"#Result\n",
"print \"The terminal impedence of the slot is\", round(Z_s.real), \"ohms\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The terminal impedence of the slot is 50.0 ohms\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 3-6.1, Page number: 61<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"L = 10 #Horn length (lambda)\n",
"delta = 0.25 #Path length difference (lambda)\n",
"\n",
"#Calculation\n",
"theta = 2*math.acos(L/(L+delta)) #Horn flare angle (radians)\n",
"theta = theta*180/math.pi #Horn flare angle (degrees)\n",
"\n",
"\n",
"#Result\n",
"print \"The largest flare angle for given delta is\",round(theta,1), \"degrees\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The largest flare angle for given delta is 25.4 degrees\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 3-7.1, Page number: 62<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"f = 599e6 #Frequency of TV Station (Hz)\n",
"E = 1e-6 #Field strength (V/m)\n",
"D = 20 #Diameter of antenna (m)\n",
"c = 3e8 #Speed of light (m/s)\n",
"Z_0 = 377 #Intrinsic impedence of free space (ohm) \n",
"\n",
"#Calculation\n",
"wave_lt = c/f #Wavelength (m)\n",
"A_e = (D*(wave_lt**2))/(4*math.pi) #Effective aperture (m^2)\n",
"P_r = (E**2)*A_e/Z_0 #Received power (W)\n",
"\n",
"#Result\n",
"print \"The received power is\", round(P_r,17), \"W\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The received power is 1.06e-15 W\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 3-11.1, Page number: 66<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"n = 4 #Number of patch antennas (lambda)\n",
"diameter = 0.5 #diameter of patch antennas (lambda)\n",
"\n",
"#Calculation\n",
"A_e = n*diameter #Effective aperture (lambda^2)\n",
"D = (4*math.pi*A_e) #Directivity (unitless)\n",
"D_dbi = 10*math.log10(D) #Directivity (dBi)\n",
"ohm_a = (4*math.pi)/D #Beam area (steradians)\n",
"\n",
"#Result\n",
"print \"The directivity is\", round(D), \"or\", round(D_dbi), \"dBi\"\n",
"print \"The beam area is\", ohm_a, \"sr\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The directivity is 25.0 or 14.0 dBi\n",
"The beam area is 0.5 sr\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|