1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 25: Sky Wave Propagation<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 25-5.1, Page number: 823<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"\n",
"#Variable declaration\n",
"muf = 10e6 #Maximum usable frequency (Hz)\n",
"h = 300 #Height of reflection (km)\n",
"n = 0.9 #Maximum value of refractive index (unitless)\n",
"\n",
"#Calculations\n",
"Nmax = (1 - n**2)*(muf**2)/81 #Max. Number of electrons per cubic cm\n",
"fc = 9*sqrt(Nmax) #Critical frequency (Hz)\n",
"dskip = 2*h*sqrt((muf/fc)**2 - 1) #Skip distance (km)\n",
"\n",
"\n",
"#Result\n",
"print \"The skip distance is\", round(dskip,1), \"km\"\n",
"\n",
"#Numerical error in the calculation of sqrt((muf/fc)**2 - 1) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"2.34567901235e+11 4358898.94354\n",
"The skip distance is 1238.8 km\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 25-5.2, Page number: 823<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"fE = 3e6 #Critical frequency for E layer (Hz)\n",
"fF1 = 5e6 #Critical frequency for F1 layer (Hz)\n",
"fF2 = 9e6 #Critical frequency for F2 layer (Hz)\n",
"\n",
"#Calculations\n",
"N_E = (fE**2)/81 #Concentration of electrons in E layer (per cubic cm)\n",
"N_F1 = (fF1**2)/81 #Concentration of electrons in F1 layer (per cubic cm)\n",
"N_F2 = (fF2**2)/81 #Concentration of electrons in F2 layer (per cubic cm)\n",
"\n",
"#Result\n",
"print \"The concentration of electrons in E layer is\", round(N_E,-8), \"per cubic cm\"\n",
"print \"The concentration of electrons in F1 layer is\", round(N_F1,-8), \"per cubic cm\"\n",
"print \"The concentration of electrons in F2 layer is\", N_F2, \"per cubic cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The concentration of electrons in E layer is 1.111e+11 per cubic cm\n",
"The concentration of electrons in F1 layer is 3.086e+11 per cubic cm\n",
"The concentration of electrons in F2 layer is 1e+12 per cubic cm\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 25-5.3, Page number: 823<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"\n",
"#Variable declaration\n",
"N_E = 0.8*0.111e12 #Concentration of electrons in E layer (per cubic cm)\n",
"N_F1 = 0.8*0.3086e12 #Concentration of electrons in E layer (per cubic cm)\n",
"N_F2 = 0.8*1e12 #Concentration of electrons in E layer (per cubic cm)\n",
"\n",
"#Calculations\n",
"fE = 9*sqrt(N_E) #Critical frequency in E layer (Hz)\n",
"fF1 = 9*sqrt(N_F1) #Cricital frequency in F1 layer (Hz)\n",
"fF2 = 9*sqrt(N_F2) #Critical frequency in F2 layer (Hz)\n",
"\n",
"#Result\n",
"print \"The Critical frequency in E layer is\", round(fE,-4),\"Hz\"\n",
"print \"The Critical frequency in F1 layer is\", round(fF1,-4),\"Hz\"\n",
"print \"The Critical frequency in F2 layer is\", round(fF2,-3),\"Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Critical frequency in E layer is 2680000.0 Hz\n",
"The Critical frequency in F1 layer is 4470000.0 Hz\n",
"The Critical frequency in F2 layer is 8050000.0 Hz\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 25-6.1, Page number: 829<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import cos, sqrt, pi\n",
"\n",
"#Variable declaration\n",
"hD = 70 #Height of D layer (km)\n",
"hE = 130 #Height of E layer (km)\n",
"hF1 = 230 #Height of F1 layer (km)\n",
"hF2 = 350 #Height of F2 layer (km)\n",
"theta = 10*pi/180 #Angle of incidence (radians)\n",
"\n",
"#Calculations\n",
"temp = sqrt((cos(theta))**-2 - 1)\n",
"d1 = 2*hD*temp #Maximum single hop distance for D layer (km)\n",
"d2 = 2*hE*temp #Maximum single hop distance for E layer (km)\n",
"d3 = 2*hF1*temp #Maximum single hop distance for F1 layer (km)\n",
"d4 = 2*hF2*temp #Maximum single hop distance for F2 layer (km)\n",
"\n",
"#Result\n",
"print \"The Maximum single hop distance for D layer is\", round(d1,1), \"km\"\n",
"print \"The Maximum single hop distance for E layer is\", round(d2,2), \"km\"\n",
"print \"The Maximum single hop distance for F1 layer is\", round(d3,2), \"km\"\n",
"print \"The Maximum single hop distance for F2 layer is\", round(d4,1), \"km\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Maximum single hop distance for D layer is 24.7 km\n",
"The Maximum single hop distance for E layer is 45.85 km\n",
"The Maximum single hop distance for F1 layer is 81.11 km\n",
"The Maximum single hop distance for F2 layer is 123.4 km\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 25-9.1, Page number: 832<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, sqrt, cos\n",
"\n",
"#Variable declaration\n",
"d = 200 #Height of layer (km)\n",
"beta = 20 #Takeoff angle (degrees)\n",
"R = 6370 #Earth's radius (km)\n",
"\n",
"#Calculations\n",
"phi_0 = 90 - beta #Take off angle for flat earth (degrees)\n",
"h = (d/2)/(sqrt((cos(phi_0*pi/180)**-2) - 1)) #Skip distance for case (a) (km)\n",
"\n",
"phi_02 = 90 - beta - 57.2*d/(2*R)\n",
" #Take off angle for spherical earth (degrees)\n",
"h2 = (d/2)/(sqrt((cos(phi_02*pi/180)**-2) - 1))\n",
" #Skip distance for case (b) (km)\n",
"\n",
"#Result\n",
"print \"The skip distance for case (a) is\", round(h,3), \"km\"\n",
"print \"The skip distance for case (b) is\", round(h2,2), \"km\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The skip distance for case (a) is 36.397 km\n",
"The skip distance for case (b) is 38.18 km\n"
]
}
],
"prompt_number": 21
}
],
"metadata": {}
}
]
}
|