summaryrefslogtreecommitdiff
path: root/Antennas_and_Wave_Propagation/chapter24.ipynb
blob: a97a053a0c86f3caaab74b5b018e2cea07bd5bae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 24: Space Wave Propagation<h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-9.1, Page number: 808<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "tx_h = 49.0       #Transmitting antenna height (m)\n",
      "rx_h = 25.0       #Receiving antenna height (m)\n",
      "f = 100e6       #Frequency (Hz)\n",
      "tx_p = 100.0      #Transmitted power (W)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "a = 6370        #Earth's radius (km)\n",
      "\n",
      "#Calculations\n",
      "wave_lt = c/f   #Wavelength (m)\n",
      "d0 = sqrt(2*(4.0/3.0)*(a/1000.0))*(sqrt(tx_h)+sqrt(rx_h))\n",
      "                #Line of Sight (LOS) distance (km)\n",
      "d = d0*1000     #LOS (m)\n",
      "Er = (88*sqrt(tx_p)/(wave_lt*(d**2)))*tx_h*rx_h\n",
      "                #Received signal strength (W)\n",
      "\n",
      "#Result\n",
      "print \"The Line of Sight distance is\", round(d0,2), \"km\"\n",
      "print \"The received signal strength is\", round(Er,6), \"W\"\n",
      "\n",
      "#The mistake is in the calculation of (88*sqrt(tx_p)/(wave_lt*(d**2))) where four orders of\n",
      "#magnitude are ignored in the resulting calculation."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Line of Sight distance is 49.46 km\n",
        "The received signal strength is 0.000147 W\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 1,
       "text": [
        "'The mistake is in the calculation of (88*sqrt(tx_p)/(wave_lt*(d**2))) where four orders of\\nmagnitude are ignored in the resulting calculation.'"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-9.2, Page number: 809<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "tx_h = 144      #Transmitting antenna height (m)\n",
      "rx_h = 25       #Receiving antenna height (m)\n",
      "k = 4.0/3.0         #Equivalent earth radius/Actual earth radius (unitless)\n",
      "a = 6370        #Radius of earth (km)\n",
      "\n",
      "#Calculations\n",
      "los = 4.12*(sqrt(tx_h) + sqrt(rx_h))    #Line of sight distance (km)\n",
      "\n",
      "horz = sqrt(2*k*a*(tx_h/1000.0))  #Surface range to radio horizon from radar (km)\n",
      "\n",
      "#Result\n",
      "print \"The Radio horizon distance from radar is\", round(horz,2),\"km\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Radio horizon distance from radar is 49.46 km\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-9.3, Page number: 809<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "tx_h = 100      #Transmitting antenna height (m)\n",
      "rx_h = 16       #Receiving antenna height (m)\n",
      "tx_p = 40e3     #Transmitting antenna power radiation (W)\n",
      "f = 100e6       #Frequency (Hz)\n",
      "d = 10e3        #Distance (m)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "E = 1e-3        #Signal strength (V/m)\n",
      "\n",
      "#Calculations\n",
      "los = 4.12*(sqrt(tx_h) + sqrt(rx_h))    #LOS distance (km)\n",
      "wave_lt = c/f       #Wavelength (m)\n",
      "\n",
      "Es = (88*sqrt(tx_p)/(wave_lt*(d**2)))*tx_h*rx_h\n",
      "                    #Field strength at distance d (V/m)\n",
      "\n",
      "dsig = sqrt(88*sqrt(tx_p)*tx_h*rx_h/(wave_lt*E))\n",
      "                    #Distance at which field strength reduces to 1mV/m\n",
      "\n",
      "#Result\n",
      "print \"The LOS distance is\", los, \"km\"\n",
      "print \"The field strength at 10km is\", round(Es,5),\"V/m\"\n",
      "print \"The distance at which field strength is 1mV/m is\", round(dsig,-1), \"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The LOS distance is 57.68 km\n",
        "The field strength at 10km is 0.09387 V/m\n",
        "The distance at which field strength is 1mV/m is 96880.0 m\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-9.4, Page number: 809<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "gain = 10       #Antenna gain (dB)\n",
      "Wt = 500         #Power radiation (W)\n",
      "d = 15e3        #Distance (m)\n",
      "Wr = 2e-6       #Received power (W)\n",
      "\n",
      "#Calculations\n",
      "Ae = Wr*(4*pi*(d**2))/(Wt*gain)  #Effective area (m^2)\n",
      "\n",
      "#Result\n",
      "print \"The effective area of the receiving antenna is\", round(Ae,2), \"m^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The effective area of the receiving antenna is 1.13 m^2\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-9.5, Page number: 809<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "h = 1000        #Height of duct (m)\n",
      "delM = 0.036    #Change in refractive modulus (unitless)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "\n",
      "#Calculations\n",
      "wl_max = 2.5*h*sqrt(delM*1e-6)  #Maximum wavelength (m)\n",
      "fmax = c/wl_max     #Maximum frequency (Hz)\n",
      "\n",
      "#Result\n",
      "print \"The maximum frequency that can be transmitted is\", round(fmax/1e6,1),\"MHz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum frequency that can be transmitted is 632.5 MHz\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-12.1, Page number: 812<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi,sqrt\n",
      "\n",
      "#Variable declaration\n",
      "gain = 10       #Gain of transmitting antenna (dB)\n",
      "P = 100         #Radiating power (W)\n",
      "f = 1e6        #Frequency (Hz)\n",
      "rx_gain = 15    #Gain of receiving antenna (dB)\n",
      "d = 20e3        #Distance (m)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "v = 1000        #scattering volume (m^3)\n",
      "sigma = 0.1     #Effective scattering cross-section (m^2)\n",
      "\n",
      "#Calculations\n",
      "wl = c/f        #Wavelength (m)\n",
      "Pr_a = P*gain*rx_gain*(wl**2)/(4*pi*(4*pi*(d**2)))\n",
      "                #Received power in case (a) (W)\n",
      "F = (2*sqrt(sigma*v))/(d*sqrt(pi))    #Attenuation Factor (unitless)\n",
      "Pr_b = Pr_a*F   #Received power in case (b) (W)\n",
      "\n",
      "\n",
      "#Result\n",
      "print \"The received power in case (a) is\", round(Pr_a,5), \"W\"\n",
      "print \"The received power in case (b) is\", round(Pr_b,10), \"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The received power in case (a) is 0.02137 W\n",
        "The received power in case (b) is 1.20581e-05 W\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 24-14.1, Page number: 813<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import log10\n",
      "\n",
      "#Variable declaration\n",
      "d = 3000      #Distance (km)\n",
      "f = 3e3         #Frequency (MHz)\n",
      "\n",
      "#Calculations\n",
      "path_l = 32.45 + 20*log10(f) + 20*log10(d)\n",
      "\n",
      "#Result\n",
      "print \"The path loss between the two points is\", round(path_l,3), \"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The path loss between the two points is 171.535 dB\n"
       ]
      }
     ],
     "prompt_number": 19
    }
   ],
   "metadata": {}
  }
 ]
}