1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 23: Ground Wave Propagation<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 23-1.1, Page number: 783<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"f1 = 0.1 #Frequency (MHz)\n",
"f2 = 1.0 #Frequency (MHz)\n",
"f3 = 10.0 #Frequency (MHz)\n",
"\n",
"#Calculations\n",
"d1 = 50/(f1**(1.0/3)) #Distance for f1 (miles)\n",
"d2 = 50/(f2**(1.0/3)) #Distance for f2 (miles)\n",
"d3 = 50/(f3**(1.0/3)) #Distance for f3 (miles)\n",
"\n",
"#Result\n",
"print \"The distance for 100kHz is\", round(d1,2), \"miles\"\n",
"print \"The distance for 1MHz is\", d2, \"miles\"\n",
"print \"The distance for 10MHz is\", round(d3,2), \"miles\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The distance for 100kHz is 107.72 miles\n",
"The distance for 1MHz is 50.0 miles\n",
"The distance for 10MHz is 23.21 miles\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 23-2.1, Page number: 786<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi,sin\n",
"\n",
"#Variable declaration\n",
"f = 3e6 #Frequency (Hz)\n",
"sigma = 0.5 #Standard deviation of surface irregularities (unitless)\n",
"theta = 30 #Angle of incidence as measured from normal angle (degrees)\n",
"c = 3e8 #Speed of light (m/s)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"R = 4*pi*sigma*sin(theta*pi/180)/wave_lt\n",
" #Roughness factor (unitless)\n",
"\n",
"#Result\n",
"print \"The roughness factor is\", round(R,9)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The roughness factor is 0.031415927\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 23-2.2, Page number: 786<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi,sin\n",
"\n",
"#Variable declaration\n",
"f = 10e6 #Frequency (Hz)\n",
"sigma = 5 #Standard deviation of surface irregularities (unitless)\n",
"theta1 = 30 #Angle of incidence as measured from normal angle (degrees)\n",
"theta2 = 45 #Angle of incidence as measured from normal angle (degrees)\n",
"theta3 = 60 #Angle of incidence as measured from normal angle (degrees)\n",
"c = 3e8 #Speed of light (m/s)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"R1 = 4*pi*sigma*sin(theta1*pi/180)/wave_lt \n",
" #Roughness factor for theta1 (unitless)\n",
"R2 = 4*pi*sigma*sin(theta2*pi/180)/wave_lt\n",
" #Roughness factor for theta2 (unitless)\n",
"R3 = 4*pi*sigma*sin(theta3*pi/180)/wave_lt\n",
" #Roughness factor for theta3 (unitless)\n",
"\n",
"#Result\n",
"print \"The roughness factor for 30 degrees is\", round(R1,4)\n",
"print \"The roughness factor for 45 degrees is\", round(R2,3)\n",
"print \"The roughness factor for 60 degrees is\", round(R3,4)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The roughness factor for 30 degrees is 1.0472\n",
"The roughness factor for 45 degrees is 1.481\n",
"The roughness factor for 60 degrees is 1.8138\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 23-2.3, Page number: 787<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"f1 = 0.3 #Frequency (MHz)\n",
"f2 = 1 #Frequency (MHz)\n",
"f3 = 3 #Frequency (MHz)\n",
"sigma = 4e-5 #Standard deviation of surface irregularities (unitless)\n",
"\n",
"#Calculations\n",
"x1 = (18e3)*sigma/f1 #Parameter x for f1 (unitless)\n",
"x2 = (18e3)*sigma/f2 #Parameter x for f2 (unitless)\n",
"x3 = (18e3)*sigma/f3 #Parameter x for f3 (unitless)\n",
"\n",
"#Result\n",
"print \"The parameter x for 0.3MHz is\", x1\n",
"print \"The parameter x for 1MHz is\", x2\n",
"print \"The parameter x for 3MHz is\", x3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The parameter x for 0.3MHz is 2.4\n",
"The parameter x for 1MHz is 0.72\n",
"The parameter x for 3MHz is 0.24\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 23-5.1, Page number: 790<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, sqrt\n",
"\n",
"#Variable declaration\n",
"f1 = 5e3 #Frequency (Hz)\n",
"f2 = 50e3 #Frequency (Hz)\n",
"f3 = 500e3 #Frequency (Hz)\n",
"sigma = 5e-5 #Standard deviation of surface irregularities (unitless)\n",
"eps_r = 15.0 #Relative permittivity (unitless)\n",
"mu = pi*4e-7 #Absolute Permeability (H/m)\n",
"\n",
"#Calculations\n",
"w1 = 2*pi*f1 #Angular frequency (rad/s)\n",
"w2 = 2*pi*f2 #Angular frequency (rad/s)\n",
"w3 = 2*pi*f3 #Angular frequency (rad/s)\n",
"\n",
"\n",
"Zs1 = sqrt((w1*mu)/sqrt(sigma**2 + (w1**2)*eps_r))\n",
" #Surface impedence for f1 (ohm)\n",
"Zs2 = sqrt((w2*mu)/sqrt(sigma**2 + (w2**2)*eps_r))\n",
" #Surface impedence for f2 (ohm)\n",
"Zs3 = sqrt((w3*mu)/sqrt(sigma**2 + (w3**2)*eps_r))\n",
" #Surface impedence for f3 (ohm)\n",
"\n",
"#Result\n",
"print \"The surface impedence for 5kHz is\", round(Zs1,5), \"ohms\"\n",
"print \"The surface impedence for 50kHz is\", round(Zs2,5), \"ohms\"\n",
"print \"The surface impedence for 500kHz is\", round(Zs3,5), \"ohms\"\n",
"\n",
"#There has been a numerical mistake in the calculation/substitution of square root of\n",
"#(sigma**2 + (w1**2)*eps_r) and in the second case, the mistake in the calculation of\n",
"#(w2*mu)/sqrt(sigma**2 + (w2**2)*eps_r)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The surface impedence for 5kHz is 0.00057 ohms\n",
"The surface impedence for 50kHz is 0.00057 ohms\n",
"The surface impedence for 500kHz is 0.00057 ohms\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 23-7.1, Page number: 793<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, atan, cos\n",
"\n",
"#Variable declaration\n",
"f = 2.0 #Frequency (MHz)\n",
"sigma = 5e-5 #Standard deviation of surface irregularities (unitless)\n",
"eps_r = 15.0 #Relative permittivity (unitless)\n",
"d = 20e3 #Distance (m)\n",
"eff = 0.5 #Antenna efficiency (unitless)\n",
"c = 3e8 #Speed of light (m/s)\n",
"E1 = 0.5e-3 #Ground wave electric field strength (V/m)\n",
"\n",
"#Calculations\n",
"wave_lt = c/(f*10**6) #Wavelength (m)\n",
"x = (18e3)*sigma/f #Parameter x (unitless)\n",
"\n",
"b = atan((eps_r + 1)/x) #Phase constant (unitless)\n",
"\n",
"p = (pi/x)*(d/wave_lt)*cos(b) #Numerical distance (unitless)\n",
"\n",
"A = (2 + 0.3*p)/(2 + p + 0.6*(p**2)) #Reduction factor (unitless)\n",
"\n",
"E_t = E1 * d/A\n",
"\n",
"#Result\n",
"print \"The Electric field strength at the transmitted end is\", round(E_t,2),\"V/m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Electric field strength at the transmitted end is 445.72 V/m\n"
]
}
],
"prompt_number": 25
}
],
"metadata": {}
}
]
}
|