1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 21: Antenna Measurements<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-2.1, Page number: 720<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"f = 900e6 #Frequency (Hz)\n",
"length = 25e-3 #Length of antenna (m)\n",
"len_cell = 110e-3 #Length of handset chassis (m)\n",
"c = 3e8 #Speed of light (m/s)\n",
"del_L = 0.5 #Peak to Peak measurement uncertainty (dB)\n",
"\n",
"#Calculations\n",
"Dm = length + len_cell #Maximum Dimension of antenna (m)\n",
"wave_lt = c/f #Wavelength (m)\n",
"r_rnf = (wave_lt/(2*pi)) #Outer boundary of reactive near field (m)\n",
"\n",
"r_ff = 2*(Dm**2)/wave_lt #Fraunhofer region (m)\n",
"\n",
"r2_ff = r_rnf/(10**(del_L/40)-1) \n",
" #Minimum distance where effect of near field is small (m)\n",
"\n",
"r3_ff = 2*Dm/(10**(del_L/10)-1)\n",
" #Minimum distance where effect of rotation of AUT is small (m)\n",
"\n",
"#Result\n",
"print \"The Outer boundary of reactive near field is at a distance\", round(r_rnf,3),\"m\"\n",
"print \"The Fraunhofer region starts at a distance\", round(r_ff,3),\"m\"\n",
"print \"The Minimum distance where effect of near field is small enough is\",\\\n",
" round(r2_ff,1),\"m\"\n",
"print \"The Minimum distance where effect of rotation of AUT is small enough \\\n",
"is\", round(r3_ff,1),\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Outer boundary of reactive near field is at a distance 0.053 m\n",
"The Fraunhofer region starts at a distance 0.109 m\n",
"The Minimum distance where effect of near field is small enough is 1.8 m\n",
"The Minimum distance where effect of rotation of AUT is small enough is 2.2 m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-2.2, Page number: 720<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"horn_len = 350e-3 #Length of horn (m)\n",
"ap_wid = 200e-3 #Aperture width (m)\n",
"ap_hei = 150e-3 #Aperture height (m)\n",
"del_L = 0.2 #Peak to peak uncertainty (dB)\n",
"f = 10e9 #Frequency (Hz)\n",
"c = 3e8 #Speed of light (m/s)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"r_rnf = wave_lt/(2*pi) ##Outer boundary of reactive near field (m)\n",
"\n",
"r_ff = 2*(ap_wid**2)/wave_lt #Fraunhofer region (m)\n",
"\n",
"r2_ff = r_rnf/(10**(del_L/40)-1) \n",
" #Minimum distance where effect of near field is small (m)\n",
"\n",
"r3_ff = 2*horn_len/(10**(del_L/10)-1)\n",
" #Minimum distance where effect of rotation of AUT is small (m)\n",
"\n",
"#Result\n",
"print \"The Outer boundary of reactive near field is at a distance\", round(r_rnf,4),\"m\"\n",
"print \"The Fraunhofer region starts at a distance\", round(r_ff,1),\"m\"\n",
"print \"The Minimum distance where effect of near field is small enough is\",\\\n",
" round(r2_ff,2),\"m\"\n",
"print \"The Minimum distance where effect of rotation of AUT is small enough \\\n",
"is\", round(r3_ff,1),\"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Outer boundary of reactive near field is at a distance 0.0048 m\n",
"The Fraunhofer region starts at a distance 2.7 m\n",
"The Minimum distance where effect of near field is small enough is 0.41 m\n",
"The Minimum distance where effect of rotation of AUT is small enough is 14.9 m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-2.3, Page number: 721<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"D = 0.5 #Antenna diameter (m)\n",
"f = 300e9 #Frequency (Hz)\n",
"c = 3e8 #Speed of light (m/s)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"r_ff = 2*(D**2)/wave_lt #Fraunhofer region (m)\n",
"\n",
"#Result\n",
"print \"The Fraunhofer region starts at a distance\", r_ff,\"m\"\n",
"print \"At 300 GHz the attenuation of the atmosphere is around 10dB/km making\\\n",
" the measurement difficult in full-size ranges\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Fraunhofer region starts at a distance 500.0 m\n",
"At 300 GHz the attenuation of the atmosphere is around 10dB/km making the measurement difficult in full-size ranges\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-4.1, Page number: 726<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"D = 1 #Diameter of antenna (m)\n",
"f = 10e9 #Frequency (Hz)\n",
"c = 3e8 #Speed of light (m/s)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"hpbw = 70*wave_lt/D #Half power beamwidth (degrees)\n",
"mea_dist = 2*(D**2)/wave_lt #Measurement distance (m)\n",
"trav_dist = hpbw*pi*mea_dist/180 #Traverse distance (m)\n",
"taper = ((0.5/(trav_dist/2))**2)*(-3) #Amplitude taper (dB)\n",
"\n",
"#Result\n",
"print \"The amplitude taper is\", round(taper,1), \"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The amplitude taper is -0.5 dB\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-4.2, Page number: 735<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log10\n",
"\n",
"#Variable declaration\n",
"pat_lev1 = -22.3 #Pattern level maximum (dB)\n",
"pat_lev2 = -23.7 #Pattern level minimum (dB)\n",
"\n",
"#Calculations\n",
"S = abs(pat_lev2-pat_lev1) #Amplitude ripple (dB)\n",
"a = (pat_lev1+pat_lev2)/2 #Pattern level (dB)\n",
"\n",
"R = a + 20*log10((10**(S/20) - 1)/(10**(S/20) + 1))\n",
" #Reflectivity (dB)\n",
"\n",
"#Result\n",
"print \"The reflectivity is\", round(R),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reflectivity is -45.0 dB\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-5.1, Page number: 739<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, sin, cos, log10\n",
"\n",
"#Variable declaration\n",
"En = 1 #Field illuminating the AUT (unitless)\n",
"tilt_diff = 88 #Difference in tilt angles (degrees)\n",
"\n",
"#Calculations\n",
"En_pol = En*sin(tilt_diff*pi/180) #Co-polar component of field (unitless)\n",
"En_crosspol = En*cos(tilt_diff*pi/180)\n",
" #Cross-polar component of field (unitless)\n",
"meas_cross = 20*log10(En_crosspol)\n",
"\n",
"#Result\n",
"print \"The measure cross-polar level is\", round(meas_cross), \"dB\\\n",
" relative to the co-polar field\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The measure cross-polar level is -29.0 dB relative to the co-polar field\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 21-5.2, Page number: 743<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, log10\n",
"\n",
"#Variable declaration\n",
"f = 1.4e9 #Frequency (Hz)\n",
"Tant = 687 #Increase in antenna temperature (K)\n",
"phy_ap = 2210 #Physical aperture (m^2)\n",
"S = 1590 #Flux density of Cygnus A (Jy)\n",
"k = 1.38e-23 #Boltzmann's constant (J/k)\n",
"c = 3e8 #Speed of light (m/s)\n",
"\n",
"#Calculations\n",
"wave_lt = c/f #Wavelength (m)\n",
"gain = (8*pi*k*Tant)/(S*(10**-26)*wave_lt**2) #Gain(unitless)\n",
"gain_db = 10*log10(gain) #Gain (dBi)\n",
"\n",
"Ae = gain*wave_lt**2/(4*pi) #Effective area (m^2)\n",
"\n",
"eff_ap = Ae/phy_ap #Aperture efficiency (unitless)\n",
"\n",
"#Result\n",
"print \"The gain of the antenna is\", round(gain_db), \"dBi\"\n",
"print \"The aperture efficiency is\", round(eff_ap,2),\"or\",round(eff_ap*100),\"percent\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The gain of the antenna is 55.0 dBi\n",
"The aperture efficiency is 0.54 or 54.0 percent\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|