summaryrefslogtreecommitdiff
path: root/Antennas_and_Wave_Propagation/chapter17.ipynb
blob: e9d63ef2a8735785bcad5f70a66766e75666099f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 17: Antenna Temperature, Remote Sensing and Radar Cross Section<h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-1.1, Page number: 623<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "#Variable declaration\n",
      "Ta = 0.24   #Antenna temperature (K)\n",
      "ang = 0.005     #Subtended angle (degrees)\n",
      "hpbw = 0.116    #Antenna half power beamwidth (degrees)\n",
      "\n",
      "#Calculations\n",
      "Ts = Ta*(hpbw**2)/(pi*(ang**2/4))\n",
      "\n",
      "#Result\n",
      "print \"The averate temperature of the surface is\", round(Ts), \"K\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The averate temperature of the surface is 164.0 K\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-1.2, Page number: 625<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi, sqrt\n",
      "\n",
      "#Variable declaration\n",
      "eff_aper = 500      #Antenna effective aperture (m^2)\n",
      "wave_lt = 20e-2        #Wavelength (m)\n",
      "Tsky = 10.0           #sky temperature (K)\n",
      "Tgnd = 300.0          #Ground temperature (K)\n",
      "beam_eff = 0.7      #Beam efficiency (unitless)\n",
      "aper_eff = 0.5      #Aperture efficiency (unitless)\n",
      "\n",
      "#Calculations\n",
      "phy_aper = aper_eff/eff_aper    #Physical aperture (m^2)\n",
      "diam = 2*sqrt(phy_aper/pi)  #Antenna diameter (m)\n",
      "diam_l = diam/wave_lt       #Antenna diameter (lambda)\n",
      "\n",
      "ta_sky = Tsky*beam_eff      #Sky contribution to antenna temp. (K)\n",
      "ta_side = 0.5*Tsky*(1-beam_eff) #Side-lobe contribution to antenna temp. (K)\n",
      "ta_back = 0.5*Tgnd*(1-beam_eff) #Back-lobe contribution to antenna temp. (K)\n",
      "\n",
      "Ta = ta_sky + ta_side + ta_back\n",
      "\n",
      "#Result\n",
      "print \"The total antenna temperature is\", Ta, \"K\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total antenna temperature is 53.5 K\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-2.1, Page number: 629<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "Tn = 50.0     #Noise temperature (K)\n",
      "Tphy = 300.0      #Physical temperature (K)\n",
      "Eff = 0.99       #Efficiency (unitless)\n",
      "Tn_stg = 80.0       #Noise temperature of first 3 stages (K)\n",
      "gain_db = 13.0       #Gain (dB)\n",
      "Tphy_tr = 300   #Transmission line physical temperature (K)\n",
      "Eff_tr = 0.9    #Transmission line efficiency (unitless)\n",
      "\n",
      "#Calculations\n",
      "gain = 10**(gain_db/10)\n",
      "T_r = Tn_stg + Tn_stg/(gain) + Tn_stg/(gain**2)\n",
      "                #Receiver noise temperature (K)\n",
      "Tsys = Tn + Tphy*(1/Eff - 1) + Tphy_tr*(1/Eff_tr - 1) + (1/Eff_tr)*T_r\n",
      "                #System temperature (K)\n",
      "\n",
      "#Result\n",
      "print \"The system temperature is\", round(Tsys), \"K\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The system temperature is 180.0 K\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-2.2, Page number: 630<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "phy_aper = 2208     #Physical aperture (m^2)\n",
      "f = 1415e6          #Frequency (Hz)\n",
      "aper_eff = 0.54     #Aperture efficiency (unitless)\n",
      "Tsys = 50           #System temperature (K)\n",
      "bw = 100e6          #RF Bandwidth (Hz)\n",
      "t_const = 10         #Output time constant (s)\n",
      "sys_const = 2.2     #System constant (unitless)\n",
      "k = 1.38e-23        #Boltzmann's constant (J/K)\n",
      "\n",
      "#Calculations\n",
      "Tmin = sys_const*Tsys/(sqrt(bw*t_const))    #Minimum detectable temperature(K)\n",
      "eff_aper = aper_eff*phy_aper        #Effective aperture (m^2)\n",
      "Smin = 2*k*Tmin/eff_aper        #Minimum detectable flux density (W/m^2/Hz)\n",
      "\n",
      "#Result\n",
      "print \"The minimum detectable flux density is %.1e W/m^2/Hz\" % Smin"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum detectable flux density is 8.1e-29 W/m^2/Hz\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-3.1, Page number: 631<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi, log10\n",
      "\n",
      "#Variable declaration\n",
      "k = 1.38e-23    #Boltzmann's constant (J/K)\n",
      "trans_pow = 5   #Transponder power (W)\n",
      "r = 36000e3     #Distance (m)\n",
      "wave_lt = 7.5e-2    #Wavelength (m)\n",
      "ant_gain = 30   #Antenna gain (dB)\n",
      "earth_ant = 38  #Earth station antenna gain (dB)\n",
      "Tsys = 100      #Earth station receiver system temperature (K)\n",
      "bw = 30e6       #Bandwidth (Hz)\n",
      "\n",
      "#Calculations\n",
      "s_n = wave_lt**2/(16*(pi**2)*(r**2)*k*Tsys*bw)\n",
      "s_n = 10*log10(s_n)     #Signal to Noise ratio (dB)\n",
      "\n",
      "trans_pow_db = 10*log10(trans_pow)  #Transponder power (dB)\n",
      "erp = ant_gain + trans_pow_db       #Effective radiated power (dB)\n",
      "\n",
      "s_n_downlink = erp + earth_ant + s_n    #Signal to Noise ratio downlink(dB)\n",
      "\n",
      "#Result\n",
      "print \"The earth station S/N ratio is\", round(s_n_downlink,1), \"dB\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The earth station S/N ratio is 13.2 dB\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-4.1, Page number: 634<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import exp\n",
      "\n",
      "#Variable declaration\n",
      "tf = 0.693      #Absorption co-efficient (unitless)\n",
      "Te = 305        #Earth temperature (K)\n",
      "Ta = 300        #Satellite antenna temperature (K)\n",
      "\n",
      "#Calculations\n",
      "Tf = (Ta - Te*exp(-tf))/(1-exp(-tf))\n",
      "\n",
      "#Result\n",
      "print \"The forest temperature is\", round(Tf), \"K\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The forest temperature is 295.0 K\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 17-5.1, Page number: 639<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "f = 10e9        #Frequency (Hz)\n",
      "wind_speed = 350    #Wind speed (km/h)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "vr = 1e3          #Differential velocity (m/h)\n",
      "\n",
      "#Calculations\n",
      "wave_lt = c/f   #Wavelength (m)\n",
      "freq_shift = 2*(wind_speed*1000/3600)/wave_lt   \n",
      "                    #Doppler Frequency shift (Hz)\n",
      "T = 1/(2*freq_shift)    #Pulse repetition interval (s)\n",
      "prf = 1/T           #Pulse repetition frequency (Hz)\n",
      "\n",
      "fmin = 2*(vr/3600)/wave_lt  #Frequency resolution (Hz)\n",
      "N = 1/(round(fmin,1)*T)      #Number of pulses \n",
      "\n",
      "#Result\n",
      "print \"The minimum pulse repetition frequency is\", round(prf,-3), \"Hz\"\n",
      "print \"The number of pulses to be sampled is\", round(N)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum pulse repetition frequency is 13000.0 Hz\n",
        "The number of pulses to be sampled is 699.0\n"
       ]
      }
     ],
     "prompt_number": 14
    }
   ],
   "metadata": {}
  }
 ]
}