summaryrefslogtreecommitdiff
path: root/Antennas_and_Wave_Propagation/chapter15.ipynb
blob: c83a14c3707b8c38e39ee47c5c8f6099f322c255 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 15: Antennas for Special Applications<h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-2.1, Page number 524<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "freq = 100e3    #Frequency (Hz)\n",
      "height = 150    #Height of antenna(m)\n",
      "RL = 2          #Loss resistance (ohm)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "\n",
      "#Calculations\n",
      "wave_lt = c/freq    #Wavelength (m)\n",
      "hp = height/wave_lt #Antenna (physical) height (lambda)\n",
      "he = hp/2           #Effective height (lambda)\n",
      "\n",
      "Rr = 400*(hp**2)  #Radiation resistance (ohm)\n",
      "\n",
      "R_E = Rr/(Rr+RL)        #Radiation efficiency (unitless)\n",
      "\n",
      "#Results\n",
      "print \"The Effective height of the antenna is \", he, \"lambda\"\n",
      "print \"The Radiation resistance for 150m vertical radiator is\", Rr, \"ohm\"\n",
      "print \"The radiation efficiency is\", round(R_E,2), \"or\", round(R_E*100,2), \"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Effective height of the antenna is  0.025 lambda\n",
        "The Radiation resistance for 150m vertical radiator is 1.0 ohm\n",
        "The radiation efficiency is 0.33 or 33.33 %\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-4.1, Page number: 529</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "import numpy as np\n",
      "from math import pi, sin, sqrt, radians\n",
      "from pylab import *\n",
      "from cmath import sqrt\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable declaration\n",
      "eps_r1 = 16    #Real part of relative permittivity of ground (unitless)\n",
      "sigma = 1e-2    #conductivity of ground (mho per meter)\n",
      "eps_0 = 8.85e-12    #Air permittivity (F/m)\n",
      "f1 = 1e6       #Frequency (Hz)\n",
      "f2 = 100e6     #Frequency (Hz)\n",
      "\n",
      "#Calculation\n",
      "eps_r11 = sigma/(2*pi*f1*eps_0)    #Loss part of relative permittivity for f1 (unitless)\n",
      "eps_r11_2 = sigma/(2*pi*f2*eps_0)    #Loss part of relative permittivity for f2 (unitless)\n",
      "\n",
      "eps_ra = eps_r1 -(1j)*eps_r11    #Relative permittivity for f1 (unitless)\n",
      "eps_rb = eps_r1 -(1j)*eps_r11_2    #Relative permittivity for f2 (unitless)\n",
      "\n",
      "n1 = sqrt(eps_ra)    #Refractive index for f1 (unitless)\n",
      "n2 = sqrt(eps_rb)    #Refractive index for f2 (unitless)\n",
      "E_perp1 = [1 + (abs((sin(alpha) - n1)/(sin(alpha)+n1))*exp(1j*(2*pi*sin(alpha) + angle((sin(alpha) - n1)/(sin(alpha)+n1))))) \\\n",
      "          for alpha in arange(0,pi/2,pi/180)]    \n",
      "\n",
      "E_perp2 = [1 + (abs((sin(alpha) - n2)/(sin(alpha)+n2))*exp(1j*(2*pi*sin(alpha) + angle((sin(alpha) - n2)/(sin(alpha)+n2))))) \\\n",
      "          for alpha in arange(0,pi/2,pi/180)]\n",
      "\n",
      "E_perp1_rel = E_perp1/max(E_perp1)    #Relative electric field for f1 (unitless)\n",
      "\n",
      "E_perp2_rel = E_perp2/max(E_perp2)    #Relative electric field for f2 (unitless)\n",
      "\n",
      "theta = arange(0,pi/2,pi/180)\n",
      "\n",
      "polar(theta,E_perp1_rel,'g',label=\"1MHz\")\n",
      "polar(theta,E_perp2_rel,'b--',label=\"100MHz\")\n",
      "legend(loc=\"upper left\")\n",
      "\n",
      "\n",
      "#Result\n",
      "print \"The loss parameter for 1MHz is \", round(eps_r11)\n",
      "print \"The loss parameter for 100MHz is \", round(eps_r11_2,2)\n",
      "print \"The relative permittivity for 1MHz is \", np.around(eps_ra)\n",
      "print \"The relative permittivity for 100MHz is \", np.around(eps_rb,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The loss parameter for 1MHz is  180.0\n",
        "The loss parameter for 100MHz is  1.8\n",
        "The relative permittivity for 1MHz is  (16-180j)\n",
        "The relative permittivity for 100MHz is  (16-1.8j)\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "/usr/lib/python2.7/dist-packages/numpy/core/numeric.py:460: ComplexWarning: Casting complex values to real discards the imaginary part\n",
        "  return array(a, dtype, copy=False, order=order)\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAARMAAAENCAYAAAAsdYFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdcU+f3xz9hCKiAgqAMUQERF2jddVJ33VpbV92tteNb\n26+t3a11FrXWaq17gbMuhuAWEVcVEBEQEBkiO8wECCQ5vz/4kS+RlYT7JAHzfr3y0pv73HNOLsm5\nzzjPOTwiIujQoUNHA9HTtAE6dOhoGuiciQ4dOjhB50x06NDBCTpnokOHDk7QORMdOnRwgs6Z6NCh\ngxN0zkRHjWzbtg09e/ZEjx49sG3bNgBAbm4uRo8eDRcXF4wZMwb5+fmy9osXL0avXr1w4cIFTZms\nQ8PonImOajx58gT79u3DgwcPEBERAX9/fyQkJGDjxo0YPXo04uLiMHLkSGzcuFHW3sHBAaGhoThy\n5IiGrdehKXTOREc1nj59igEDBsDY2Bj6+voYPnw4zpw5A19fXyxYsAAAsGDBApw/fx4AYGBgAKFQ\nCJFIpEmzdWgYnTPRUY0ePXrg1q1byM3NRXFxMQICApCamorMzEy0bdsWANC2bVtkZmYCAFxdXSEW\nizF8+HB88sknmjRdhwYx0LQBOrQPV1dXrFq1CmPGjEGLFi3Qq1cv6Ovry7Xh8Xjg8Xiy461bt6rb\nTB1ahq5noqNGFi9ejIcPH+LmzZto3bo1XFxc0LZtW2RkZAAA0tPTYW1trWErdWgTOmeio0aysrIA\nACkpKTh79izmzJmDyZMn4/DhwwCAw4cPY+rUqZo0UYeWwdPtGtZRE8OGDQOfz4ehoSG2bt0KDw8P\n5Obm4t1330VKSgo6duyIU6dOoVWrVpo2VYeWoHMmOnTo4ATdMEeHDh2coHMmOnTo4ASdM9GhQwcn\n6JyJDh06OEHnTHTo0MEJughYHfVCRBCLxbIXEcHQ0BAGBgYwMDCQi4TV8fqicyavIVKpFHw+H+np\n6UhLS5P9+/LlS6SlpSEzM1P2b3l5OaRSKQwMDKCvry9zHlWdi56eHpo1a4bWrVvD3t4ednZ2sLW1\nhY2Njezfyv+3adMGenq6DnFTRBdn0sTJzMxEaGgoQkNDcf/+fURGRiI9PR2mpqZo1aoV7Ozs0KlT\nJ9ja2sLc3BwdO3ZE+/btYWNjg7Zt28LY2Bh6enq19j6ICFKpFCKRCFlZWXLOKSoqCoWFhTLHlZKS\nguLiYtjY2MDd3R1vvPEG+vbtiz59+sDGxkbNd0YH1+icSROiquMIDQ3Fv//+C6FQiH79+qFPnz7o\n2bMn+vfvDwcHBxgbG2vERpFIhNTUVDx69Aj+/v5ITk5GREQEjI2N0bNnTwwcOFDnYBopOmfSiOHz\n+QgICICfnx/u3r2LwsJCdOnSBR4eHujTpw/69OkDR0dHzuc0goKCMGLECM7kERGSk5Nx7949hIeH\nIzw8HKGhodDX18eQIUMwefJkTJgwAVZWVpzp1ME9OmfSyIiLi4Ovry/8/PwQHh4ONzc3LF68GMOH\nD2fiOGqCa2dSE0SExMRE3Lp1C35+frhy5Qo6d+6MmTNnYvLkyXB1ddVN/GoZOmei5UgkEty9exe+\nvr7w8fEBn8/HO++8g8mTJ8PDwwMmJiaaNlEtiEQi3LhxA35+fvD19YWRkREmTZqEKVOmYMiQITAw\n0K0laBqtciYWFhbIy8vTtBlNntatWyM3N1fTZqgMESE8PBwnTpzAtWvXkJSUhHHjxmHRokUYOXKk\nrseiIbTKmfB4PGiROU2Wht5ndQxzlCE1NRV79+7FsWPHoKenh+XLl2PhwoW69AhqRrfgr6PRY29v\nj9WrVyMuLg779+/Hv//+CwcHByxduhRhYWGaNu+1QdczeQ15He5zZmYm9u/fj127dsHOzg7Lly/H\nu+++q7El8dcBnTN5DXmd7rNYLIafnx/Wrl2LlJQULFq0CF988YUuhoUBumGODqUJCgrStAkKY2Bg\ngGnTpiE0NBR37tyBSCRCt27d8O2338pVJNTRcHTORMdrQ+fOnbFt2zY8evQIKSkpcHFxwebNm1FS\nUqJp05oEOmeiIDt27EDfvn1hbGyMRYsWyd4PCgqCnp4epk+fLtc+IiICenp68PDwkL2np6eH58+f\ny7X75Zdf8P7777M1nmO0aSVHFTp06ICjR48iKCgIt2/fhqOjI/bv3w+xWKxp0xo1OmeiIHZ2dvjx\nxx+xePHiauesrKxw7949udiNw4cPw8XFpd6YB11MhObo1q0bzp07h9OnT8PLywtubm44d+7cazOf\nxDU6Z6Ig06ZNw5QpU2BpaVntXLNmzTB16lScOHECQEXU6qlTpzB37lylvpienp4wNTWVvQwNDeV6\nQdpCY5ozUYTBgwfjxo0b2LJlC77//nv069cPN2/e1LRZjQ6dM1GS2pzD+++/jyNHjgAALl26hB49\nesDW1rbe66sef/311ygqKkJRURFiYmJgbW2NWbNmcWi9jtrg8XgYP348njx5gi+++ALvv/8+li1b\nhsLCQk2b1mhodBsaeKu5GRbQz6p1ZWsblgwaNAi5ubmIi4vDkSNHsGDBAhQXF1dr98Ybb8glByot\nLcXMmTPl2pSUlGDKlClYsWIFxo4dq5KdLGnscyZ1oaenh7lz52LixIlYuXIlunbtikOHDmH06NGa\nNk3raXTORFUnwJn+OoYt77//PrZv346goCAcOnQI3t7e1dqEh4fD0dFRdrx69Wo8e/ZMrs2SJUvQ\ntWtXfPXVV9wZrkMpzM3NsXfvXly4cAFLlizB+PHjsWnTJpiZmWnaNK1FN8xRkromTOfNm4e///4b\nEyZMUDjS8lXntHHjRjx79gz79+9vkJ0saWpzJnUxYcIEREZGQiqVonv37rh69aqmTdJaGl3PRFNI\nJBKUl5dDLBZDIpFAJBJV2/beqVMnBAcHy/U8lCEwMBDbt2/H/fv3YWRkxIXZOjigspfi4+ODRYsW\n4e2338bmzZthamqqadO0Cl3PREHWrFmD5s2b47fffoO3tzdMTEywbt068Hg8ud7Km2++iXbt2gFA\ntXM19Wqqtjl16hRycnLQtWtX2YrOxx9/zPiTKU9TnjOpiylTpuDJkyeQSqXo0aNHg3opEokEvXv3\nxqRJkwBUxBvZ29ujd+/e6N27NwIDA2VtFy9ejF69euHChQsN/gxMIS1Cy8xpstR1nwsKCqi0tFR2\nfPnyZcrIyJAdnzx5klJTU2XH58+flzuflpZGIpGIY4u1jxMnTpC1tTWtXbuWpFKp0tdv2bKF5syZ\nQ5MmTSIiol9++YW2bNlSrV1kZCT9/PPPJBaL6d13322w3SzR9Uxec7y8vOQmgC9fvgw+ny877tKl\nC8zNzWXH48ePx9OnT2XHgwcPljsfGhoqF7y3a9cupKeny47T09ObRFDYe++9h/DwcPj6+mL27Nk1\nrtzVRmpqKgICArB06VLZvSCiGu+LgYEBhEIhRCIRZ7YzQ7O+TB4tM6fJ0tD7fOPGDZWvPXXqFOXk\n5MiOr127RmVlZQ2yR5OUlJTQ7NmzqWfPnpSSkqLQNe+88w6FhYVRUFAQTZw4kYgqeiYdOnQgNzc3\nWrx4MeXl5cnar1ixgvr27Us3b95k8hm4Qtcz0aE0DZkzmTlzplwUcYsWLWRzRmKxGL6+vg01T60Y\nGxvj6NGjmDdvHgYOHIg7d+7U2d7f3x/W1tbo3bu3XE9k+fLlSExMxKNHj2BjY4P//ve/snNbt27F\ngwcPMGzYMGafgxM07c2qomXmNFm09T5LJBKKiIiQHRcUFFB0dLQGLVKOgIAAsrKyon379tXa5ttv\nvyV7e3vq2LEjtWvXjpo3b07vv/++XJvExETq0aMHa3M5R6u+Vdr6JW9qNPQ+N2SYowwCgUBOlyoT\nneomKiqK7O3t6fPPP6fy8vI621Yd5qSlpcne//3332n27NlM7WSBbpijQ2tp0aKF3JDq/v37ckum\n2ki3bt3w+PFjPH36FOPHj6+z2gIRyYZ4X3/9Ndzc3ODu7o6bN29i69at6jKZM3RpG19Dmsp9Pnv2\nLIYOHaqVlf7EYjG+/PJLXL16FUFBQbC2tta0SczROZPXkKZynwsLC8Hj8bQ2EpWI8NVXX+HChQu4\ndu1ajbvImxK6YY4OpdGWvTlmZmYyR1JWVoZ169Zp2CJ5eDweNm/ejAULFmD48OFISUnRtElM0TkT\nBaktbSMAXLt2Da6urmjRogXeeuutal+aVatWoU2bNmjTpg2++eYbuXN6enpo27YtJBKJ7L3y8nJY\nW1vLpSoYMWJEtc1/QUFBaN++PVcfsVHTrFkzfP/997Lj0tJSDVojzzfffIOlS5di8ODB1dJ2NiV0\nzkRBakvbmJOTgxkzZmDdunXIy8tD37598d5778nO7969Gz4+Pnj8+DEeP34MPz8/7N69W06GhYWF\n3MRiYGAgLCwsqu3r0ZYUj41hb05YWJhWZUtbtWoVvvnmmxofNk0FnTNRkNrSNp49exY9evTAjBkz\n0KxZM/zyyy+IiIhAXFwcgIpcsCtXroStrS1sbW2xcuVKHDp0SE5G1SxtAHDkyBHMnz9fqXmNu3fv\nyqV8NDY2RqdOnVT/wI2cN998E8OHD5cda7KGdXFxMSQSCT755BOsWLECI0eORFpamsbsYYXOmSjJ\nqz/wqKgouLu7y46bN28OZ2dnREVFAQCio6Plzru5ucnOVTJlyhQEBwejsLAQeXl5CAkJwZQpU+rV\nXZVBgwbJUj7m5eVh4MCBmDNnjkqfsT60Zc5EUaRSKby8vDQ26Xz8+HFZ+scVK1Zg6tSpGDFiBLKy\nsjRiDysanTP55ReAx6v++uUXxdvX1lYRXh1qCIXCatm3zMzMUFRUBAAQCARyG+HMzMwgEAjk2hsb\nG2PSpEk4ceIETp48iSlTplRLrkRE+M9//oPWrVvLXpMmTapx6PPZZ5/BzMxM6yYkNYWenh7+85//\nyIXtq5MlS5agdevWsuNNmzZhzpw5GDVqlNymyMZOo3QmRNVfdTkTRdsqwqtPt5YtW1ZLOlxQUCBb\nZXj1fEFBAVq2bCnXnsfjYf78+Th8+DC8vLxqHOLweDxs374deXl5spe/v3+1drt370ZwcDCOHTum\n+oesh8YwZ1IXAQEBiIiIYKpDKBTi5cuXtZ7/+eefMWrUKMycORPl5eVMbVEXjc6ZaJpXewLdu3eX\n+2IKhUIkJCSge/fusvOPHj2SnY+IiECPHj2qyR06dCgyMjKQlZWFwYMHK2TLq47k1q1b+Omnn+Dj\n41PNYen4H5MnT5YberLgzp07MDQ0rPU8j8fDpk2bUFBQgC+//JKpLepC50wURCKRoLS0VC5to0Qi\nwbRp0/DkyROcPXsWpaWlWL16NXr16gUXFxcAwPz58/H7778jLS0NL1++xO+//46FCxfWqMPPz6/O\nXbN1jflfvHiBd999F15eXnB2dm7QZ62PxjZnUhdxcXE4deoU53JHjx5db9Srvr4+rl69iitXrmDv\n3r2c26B21LsVqG60zBw5fv75Z+LxeHKv1atXExHR1atXydXVlUxMTMjDw4OSk5Plrv3666/JwsKC\nLCwsaNWqVXLn9PT0KCEhoZq++Ph40tPTkx2PGDGC9u/fL9fmxo0b1L59eyIiOnjwIOnp6VHLli1l\nr9p2njb0Pqtro5+64CqfikAgoNu3byt9XWxsLFlbW9OtW7c4sUNT6MLpX0N097lmRCIRIiIi0L9/\nf5Wuj4uLg7m5Odq2bav0tQEBAVi4cCEePnwIBwcHlfRrGt0wR4eO/6dZs2ayVThVcHFxUcmRAMDb\nb7+Nb775BlOmTIFQKFTZBk2icyY6lKYpzZlUhcfjYeTIkUpdIxQKcfz4cU70f/HFF3B3d8fChQsb\nZc9R50x01ItAIJCLzcjOzm4cCY4bgEQiUShOR09PD6NGjeJEJ4/Hw65du/DkyROsWbOGE5nqROdM\ndCAuLg4FBQWy4927d8tllD979izy8/Nlx0ZGRnJd8Z07dyIzM1N2vH37duTk5MiOpVIpK9OZoa+v\nX21TZk2YmJhwmk/F2NgYV69exb59+3Dx4kXO5KoFjU7/voKWmdNkAUCxsbGy4+DgYLls6FyzZcsW\nKiwslB1XTVHYGJBKpZSbmys7FovFtGHDBqY6r127Ru3bt6f8/HymerhEt5rzGsLj8VBeXl6tvKmi\nBAUFqRwFS0TYu3cvli5dCj09PUgkEkgkEjRr1kwleeqgvLwcu3fvxqeffip7TyQSMS/hunjxYkil\n0mobQ7UWzfoyeVq3bk0AdC/Gr9atWzfo78RlnEl+fj7t2LGDM3kskUgkatVXWFhIDg4OFBAQoFa9\nqqJVzkRZBAIBOTg4kJ+fn9p0SqVSkkgk9Ouvv6pNp7JER0dTcHCwps1QifDwcDp79qymzaiRtWvX\nUnZ2NsXExKhN57Vr18je3p7pMJQrtGqYoyyffvopsrKymIRD10R5eTk8PT3lMnppA5V2fffdd1qT\nQKkhUJWs7WlpabCxsdGazyWRSHD58mWMHz9e4WtEYhFi+bFIzk9GWlEa0orSkFeahzJJGcokZQAA\nCxMLWJhYwN7MHu5t3dHVqiua6VcM/ZYvX46SkhKtH+40WmcSFBSEefPmITIyUm57N2uqftGBii9X\ncXGx2pMaS6VSiMVi2VzDq3axpCFzJspy/fp1tG/fHp07d1aLvlcRCoVo1qxZnZv2qiISixCaHorb\nKbdx/+V9PMl6guSCZDi2dkSnVp1ga2oLmxZ2aCayBU9iDBMjA0BPjBJeNoqk2UgqSEJERgSS8pMw\nrMMwzOw2E2Pbj8WAXgOwb98+pZyY2tFgr0hlBAIBdezYUW3Dm7rGyvn5+XVWcGPFsWPH6Pnz52rX\nS6S5vTnFxcV04cIFteo8dOgQZWdn13guLCyMBAIBRWRE0IZbG2jYwWHUYl0L6vVXf5r91wb64o+b\nFJkZSSKxSO667GyiNm2I7OyI2rYlsrAgataMyNn5f22KREV08slJmnFyBll5WtEH2z7Q+uFOo+yZ\nfPrpp3j27Jna1uG3bt2KJUuWVEuCpG6ysrJei/ortUFEiIyMhJubm0btkEglCEkJwcGQgwh8FIiW\n7U3ROf0HGKWNwIuo9oiJ1kenToC7O3D0KKCnQDQXEZCfD9TUyb4dE48fA/5A3AUfjOowCocOHuL8\nM3GChp2Z0oSEhJCdnZ3cur+2kJKSwiwuICcnh44fP85EdmPl8uXLlJOTw7lcgUBQY68vNC2U/hPw\nH7LZbEPuf7vT+uD1FJtTEa+zdCmRpydRSAhRcTG39oSEEFlZSan3mDtkbGZCly9f5lYBRzQqZyKV\nSmnQoEF05MgRtelTBj6fT1euXOFUf2lpKWfyuEJbUhDk5eUxCYC7ceMGZWRkEBFRbnEu7bi/g3r8\nPoQs535On3n/QU+zn1a75uHDh5zbUZW8PKIvviAyMTtEnbu6qn2ZWhEalTPx8fGhDh06kFgsZq4r\nMTGRDh48yFxPXfj4+FBkZKRGbagJbXEmVcnKyqIXL15wJi8yM5IWnV5Ozee+T3b971PzlmU0cZKU\nwsJqbu/j46OWwuqnTpWTYfPuWtlLbTTORCwWU/fu3en8+fNq0VcZT6Iqt27dalSh0I2d4uJiCgwM\nVPl6gUBA169fpwtxF2jk4ZHUavE8MjET0uBhItq3r6JnoC28veh3smpnSyKRqP7GaqTROJNDhw7R\nkCFD1OL9uYDP51NcXJzS1/3xxx9UVFTEwKLXC2UeBGKJmHZc3EHdPbtTz5096cijI5SaLqJXEuYp\nREZGBvOec7Ywm1o6taS//vqLqR5laRTOpKSkhOzt7SkkJIS5rj179pBAIGCupza07WlTE9o4zKmK\nWCxWKEJZIpXQjmtnyOXPLjRg7wDyferb4IdVVFQU8+hjqVRKxh8bk42NjUa/q6/SKJzJli1baOjQ\noWrRxefzOZfp7e1NBQUFtZ5PTExsND0uIu13JvUhlUppu981Mu93gnjNdpFXUEijuv9ERFaeVjR1\nxlRas2aN3PuLFi0ia2vrWvP/EhF99tln5OzsTG5ubhRW2ySQCmi9MykoKCBra2t6/Pixpk1Rmdzc\nXCopKan1/KFDh7Rydr4pIJVK6ebNm7LjfX6PqJX7TTIwy6Y5nz2m+PiaA9K40s2CMnEZGf5qSDFP\nY8jc3FxueTw4OJjCwsJqdSYXLlyg8ePHExHRvXv3aMCAAZzZpfXJkTZv3oxx48ahZ8+eTPWwLHLd\nunXrahX6qrJgwQLoKRLZpENpeDwexGIxEnIT8OZ/t2DZPGtMHm+M/HQLHP2zJ5yd2zDRW1BQgD//\n/JOJ7IS8BNiZ2cG1iytmzZqFDRs2yM4NHTq0zu0lvr6+WLBgAQBgwIAByM/Pl0ts1RC0+hucmZmJ\nbdu2YfXq1Uz1EBEkEglTHZVs3LgRYrEYJ06cUHuZSq5oTDlghWVCXKWr6L+vP0aPK0NGsim6mF5F\ni+Zsv/rm5uZy+U+4JDA+EKMdR+O774BFi37GwYMHkZKSotC1L1++RPv27WXH9vb2SE1N5cQurXYm\nf/zxB2bPno2OHTsy1cPj8fDWW28x1VHJf//7XxgYGKBPnz4qJyfSUT9EhPNPz6Pbzm5Iyk9C5PJI\n/DBiJc6ePIavvvpKLTbo6+szkesb54txnSZhxw6gc2cbzJ8/H56engpfTzWUnuUEzgZMHFNaWkrW\n1tZy6QVZUNdcBmvUEXz3ulFURPT5V/n0xufryHWHK117fo2I/nevKyNb1YVUKiUfHx/O5D3OeEzt\nNrejG8Gl1KtXxXuJiYlkbm4uCylITEysdc5k2bJlcgFvXbp04eyeaG3P5PTp0+jZs6eszCYLysvL\nsX37dmbyX+XEiROyRM1isRgbN25Um+6mDhFw+IgU9o4C7Lp6GR6DWyLiowi81amix7l582aIRCKV\n69qoCo/Hg729PWfyPO944vMBnyPAzwhjxlS817FjR4wYMUKhYvWTJ0/GkSNHAAD37t1Dq1atuLsn\nnLgkBvTr14+OHTumaTM4RZu3j7/K+fPn5ezdunWrbHPljRs35I6JiP7880+5pNHqJDycqM+AYmrZ\nMZp6fLuUorOi670mNjaW0x6DOojOiibL3ywpNSePLC2JqlaVvXTpErm5udF7771HNjY2ZGhoSPb2\n9rR//37atWsX7dq1S9b2k08+IScnJ3Jzc6PQ0FDO7NNKZxIeHk729vZUXl6uaVPUgkgkqjMORR3s\n2bOHUlJSZMdJSUm13v+a4kxEIpHc8vbatWvVEoAnkUjJpW8qtZi+grbc3kpiyf+GjgKBoM5hrLrv\neUMCzCRSCQ09MJS2399OR48STZnyynmJhOzt7VWqdcwVWulMPvjgg2rBOFwilUrp1KlTzORXJSMj\ng06cOFFnm7y8PDp8+LBa7KnE39+fwsPD1aKruLiYSWmItMI0Gus1lvrs7ltjb+TYsWOUlZXFuV5V\nkEqltGnTphrPBQYGUpcuXcjZ2Zk2btxY7Xx2djZ1H9SdTOxNqHv37rR//0HKzKwuZ+3atTRnzhyu\nTVcYrXMmeXl5ZGZmRunp6cx0lJWV0dOn1beRs6C4uFgrQp6lUqncdn1Nhu3HxMQ0OIr2QtwFare5\nHf10/ScqE5c1SNaBAwc0lupBLBaTk5MTJSYmUllZGbm7u1N0tLxj/Ozrz8jEw4TC08MpOzubLCws\nauw18vl8Mjc3p8yaPI0a0LoJ2MOHD+PNN99Eu3btmOkwNDREly5dmMmviomJCVq0aKFw++fPn8tV\n1+OK6OhoPHv2THbckDo1DY0z6dKli9IT60TAP/8A2bkifHnpS3zk/xFOvnMSqz1Ww1D/f/lZhUIh\n4uLilJI9YcIEjQUN/vvvv3B2dkbHjh1haGiIWbNmwcfHR3a+uLwYZ1PPop9lP/Rq1wuFhYWwtLSs\nMazAwsIC06dPx/79+9X5EWRolTMhIvz999/49ttvmelQV6DYpUuXIBAIlL6uVatWePToESc2nD9/\nHuXl5QCA7t27Y+jQoZzIbSg8Hg+2tray40OHDiExMbHW9tnZwDvvAN//VIZRf8/F87znePTRIwzr\nMKxa24iICLRq1Uope6ytrRVOGN1Q8vLycOfOHdlxTUFkL1++BFDxe/jI/yOMmD4CvOyKe+bu7o5t\n27bVKn/ZsmXYsWOH2oIwq6JVzuTGjRswMDBg+qXfuHGjWqoGtmvXDi1btlT6OgsLCwwfPpwTG5yc\nnJj8SLjOTL9w4cJaAxP9/CpyqepZPkfBAme87zEQ5947BwsTixrbv/nmmyrnyX369Cln0aC10apV\nK7lgtroCxtYEr0FkViQcI53QuXMvpKWl4dGjR/jkk09QVFRU4zUDBgyAnZ0dAgMDObe9PrTKmezd\nuxczZ85kWrLh+++/V0tJCHd39wbLuHHjhlJDnuLiYrmnHuv9TFxS+TdJTU3Fvn37IJUCy5cD//kP\nYeJ3XrjjOhT/zPbGyjdXVvv7CYVCXLlypcE2dOjQARkZGQ2WUxc8Hg8DBgyQHdvZ2eHFixey4xcv\nXsDe3h47H+zEkYgjCJgTCK/DDxAbOxNAxQOiU6dOiI2NrVXHsmXLcODAAXYfojY0MlNTA2VlZWRh\nYSG3PNkY4bL8BJ/Pp8TERIXbJyQkcJq6sDZYpyCo3G37955SmnpoPg3YO4BeFr6stX1qaqrGJh1V\npfIzlpeXk6OjIyUmJpJIJCJ3d3fa7LOZ7LbYUUJuAv32G5Gl5Re0atUvRFSxOmhnZ1dnqozs7Gwy\nNTVVe3S31vRMbt++jU6dOsmNH7kkNTUVaWlpTGRXQkQIDg7mTJ6FhUW9+5KICGVlFVXhHB0dOY22\n1BQ8Hg+phanYJRkAfkQibiy4AVtT21rb29nZcVoCRCKRoLCwkDN5NXH27FnExMTAwMAAO3bswNix\nY9GtWze4DHPBprhNWCRZhNUrrmDnTuDGje8QFfUQ7u7uGDVqFDw9PWFhUfMwDwDatGmDjh074vr1\n60w/QzXU6rrqYMWKFbR69Wpm8m/evNmoc7IePHiwxghTPz8/tcWLqIuHLx+S3RY78gzxpNjY2Brz\nggiFQtraMUGYAAAgAElEQVS7dy8T/UVFRbR79+4az9UXE0JU0XPr1asXde/enYYPH15jm/Ly8mqf\n669//yL73+0pKiuK9u8nsrEhUrWs8aZNm2jZsmWqXawiWuFMpFIptW/fvsn9KLgkLy+PysoaFk+h\nrTx8SPToUcX/fZ/6UhvPNnQm+ky1dlV/fGKxmElWvLpQJCYkLy+PunXrJhtu1lYNsCpSqZTWB68n\nx22O9Dy3Ypi8bx9RQ/a4xsbGkq2trVozyGnFMOfp06cAuJm01AREhM2bNzPV0apVK9nKDJ/PR0xM\nDFN9dcFVPhMiYPduYPx4IDUV2Be2Dx/6f4gLcy5getfp1dr/+uuvkEqlACq299fV1WdBfTEhAHDs\n2DHMmDFDNtxs06b25EtEhISkBHzo9yGOPzmOW4tuoVPrTgCAJUuAhuxxdXFxgZGREcLCwlQXoiRa\n4Ux8fX0xadIkZqssXl5eTORWwuPxsGzZMqY6qvLdd9/BxsZGbfpYIBQC8+cDf/0F3LpFCGu5BhtC\nNiB4YTD62/Wv8Zoff/wRa9euVcvSPgAUFhbKOYu6YkIqiY+PR25uLjw8PNC3b986v3v8Ej7Grx6P\nrOIs3F58u855IVV46623qjk7lmiFM/Hx8cHkyZOZyCYiDBo0iInsqpiamjLXUcnOnTuVDszikobG\nmcTFAQMHVtTgvXuXsDvpvzgdcxq3F99GZ8vOtV6np6eH77//HkDFMjhrzMzM0L17d9mxIg+78vJy\nhIWFISAgAJcuXcKaNWsQHx9frd2TrCfov7c/ZsydgTMzz8HUiPvvz4IFC+Dn58e53NrQuDPJyspC\nZGQk54FQlfB4PDg7OzORDQCJiYmyrjdLysrKcOnSJQDyGbwqI1wbExERwKefAvsPSPCfq0txL/Ue\nghYEoV3LmrdQVP2M+vr6KC4uVlscRdXvTm0xIVVp3749xowZAxMTE1haWmLYsGGIiIiQnSciHAw/\nCI/DHvjV41dMN9+AN3rrIT+fe9sHDRqEFy9eKJzSscGobXamFg4cOEDvvPOOps1QmcOHD6tlkisz\nM7NazIlIJKp1RYElXMSZlEvKae6ZueRxyIOKRHUXHdu0aRMJhcIG61SVkpISkkgkNcaEvDoBGxMT\nQyNHjiSxWExCoZB69OhBUVFRRERUWFpIc8/MpW5/daPH6U9oyxaiNm2I1q69xcz2SZMm0Y4dO5jJ\nr4rGncm0adOYbb9PTk4mLy8vJrJfZxrqTMol5TTr9CwafWQ0Ccsa5iTUkfoyJCREVlgrICCAXFxc\nyMnJidavX09EVC350KZNm6hbt27Uo0cP2rZtGxERhaWFUec/O9NSn6WUmCqk8eOJBgwgev68ojwF\nqwCzgwcP0ujRo5nIfhWNOhOpVEpt27alpKQkJvIlEonGtpZzRVRUlELlQoVCodbF0ZSXEz14IP+e\nWCKmuWfm0ugjo6m4rLjWawUCgUKZ27y9venZs2cNNZUZZeIyWh20mqw8rejY42NUUkLUsSPRt98S\nqWOlPysri8zNzdVSl0mjcyZpaWkoLS2Fg4MDE/l6enowMjJiIjslJQX//vsvE9lVSUxMRPPmzett\nJxKJEBAQwNweRZBKAV9f4I03gJ9/rlgCBgApSfGB3wdIK0rD+VnnYWJoUquMwMBAlJSU1Ktr7ty5\ncHJyqvHcxYsX4erqis6dO+O3336rVcaDBw9gYGCAs2fP1qtPGSIyItB/X3/cS72HsGVhmN1zNoyN\ngZAQYP16QB0bla2srGBubo6EhAT2ypi7qzrw8fGhsWPHMpEtEomYJgBKTk5uVDlduaS2Yc727UTv\nv09kb0/Upw/R2bNEldNJUqmUVgSuoEH7BtU7R8IFigSYVbbz8PCgCRMm0OnTp+uU+eDVblYtiMQi\nWW/kYPhBhebU7ty5w2xf2vDhw+Uy0rNCoz2T0NBQ9OnTh4nsoKAgREVFMZENAA4ODkyXZxuyShMb\nG8skwVJ9mJoCI0YAly8DDx8C06YBlaup62+tx/Wk67gw5wJaNqs5NYNQKFT5bxYTE4OQkBDZsSIB\nZgCwfft2vPPOO7CysqpXR2Vlgbq4+vwq3P52w4O0B7g+MwILey1UaEnZycmpQQmr6mLIkCF4+PAh\nE9lV0agz+ffff5k5kzFjxqB3795MZKsDT09PlYOzrKysEB0dzbFFFT+8kpIS2TL+0aNHZZsMAWDB\nAmDxYqBrV/nrDoQfwP7w/bg49yJam9ReujI6OrrOiNG6cHV1RadOnWTHigSYvXz5Ej4+Pli+fDmA\n+uNIJk2aVOu51MJUvPvPu/jA7wOsH74FQ1L8MKKvDaokt6sTa2trZmU4hgwZopZIWI05EyJi2jNh\nyaZNm5hHYTYk74qFhQUngXpbtmyR6+EsWrRIrmbykCFDZOkDxWIx1q1bV+2+XHx2Ed9d+w4X512E\njWndUbv9+vVT+QfF4/FgZ2cnd1wfK1aswMaNG8Hj8UAVixFK6y0Vl+K3kN/Qa1cvdG3TFVs6PsWq\n6RNw+zZw7x7AMMRJYfr06YOwsDD28VDMB1K1kJqaSpaWlkxiNAQCgVxNF65RZHVFW7h48aLCqzzn\nz5+nJ0+e1NuutjmTqisGBQUF9G/Sv9TGsw2FJIfUKksgENCFCxcUsk8RsrKyqLS0lO7evSs3H7d+\n/fpqMTmdOnWijh07UseOHally5ZkbW1dby0df3//irgTqYSOPDpCHbZ2oCnHp9DtJ4k0bhyRiwtR\nQIBqtgcGBjKbN7G2tqa4uDgmsivRmDPx8fGhMWPGMJF99+5dioiIYCKbNTdu3OB04pjP59PLl7Un\nFqqKorEOisSZPIp7RFaLrOjo46N1tsvMzOS0ZGd0dDQFBwcrFGBWlYULF9KZM9V3Kr/K8+fP6Vz4\nOeq1qxcN3DeQbiVXBJwJhUQ7dxI15E+Xl5fHrJDZxIkTmU/Caqxy9sOHD+Hq6spE9sCBA5nIBYDS\n0lK5rj7XGBgYcDoRV9fO2uLiYuzZswcrVqwAAIU/V31bH8okZfgs5DN8OO9DzOk5R6arpiVuLpMa\nAUDXKhM2lUmHJBIJlixZgq5du2L37t0AoNLGzHup9/BTyE9Iyk/ChpEbML3rdNlwqnnzijSTDYHl\nhP7AgQMRGhqKWbNmMdOhsZ7JuHHj1F54igvWrVunaRNUZs+ePXJDNKlUyiTy8tMLn9LEYxNJIv3f\nsMfT01MWrVpSUkJ///13tevqSzzk7e1Nbm5u1LNnT3rzzTfV1vsMSQ6h0UdGk8NWB1rv500htxtf\npcnAwEDy8PBgqkNjzsTe3p7TfKmVSKVSim1IVpkmTEFBAUkkkgYPK+oa5nhHeJPzn86UV1J7DI5U\nKq02j6NIXMidO3dk1wUGBtKAAQNq1eHv76/AJ6mb4KRgGnl4JHX8oyP9evokLVgoJgsLoo8+ClQq\nN68ybNu2jUm0amZmJpmZmXEutyoaWc2RSCTIyMhgkq9UKBQyWRZlTVpaGk6ePMlUh5mZGYRCIS5f\nvsxE/tOcp1hxaQVOzzyNVsY1d9mJCDdv3oS5ubnc+4rEhQwaNEh23YABA+osS2Ftba3S6oxEKsG5\nmHMYcmAIFpxfgIG8z9AnJAHbl78Lx076ePYM2LhxkMpL2PUxf/58JnKtrKxQVlYGoVDIRD6goaXh\nrKwsmJubM6np0rJlS0ydOpVzuQCQmZnJRC4AWFpaYuLEiczkV2Jqaop58+bh119/VXl5u6Y5k1Jx\nKd47/R7WvbUO7u2qZ8wjIvz666+y/7+qW5G4kKrs378fb7/9dq3n+/Xrp9TSenF5MXY+2AnXv1yx\n8fZGfD7gc8R+GocH3lPw5iA9PH8O/PQT0Lo1YG5urlJNJEVo1aoVk+qCPB4PNjY2CgXeqYpGJmDT\n09OZeXaWnDlzBh9//DET2UZGRsz2EQEVqR7Nzc1hYGAAHo+HH374gdPMdquurIKLpQs+eOODGs9X\n1enh4VHjeUW5ceMGDhw4gNu3b6tsbyVJ+UnYE7oH+8L2YbDDYBycchCD2w+W2fP/KWSaBJXOhFV+\nH430TNLT0+Ho6MhEdmRkJBO5AJg5ErFYzDwIzsfHRy5Ev+rTTyQSKSXr1RywVxKu4OzTs9g9cXc1\npyASiWSf7dUn7vPnz2WBVIokHgKAx48f44MPPoCvry9at649mhYAAgICakwMJJFKcCHuAiYem4g+\nu/rh6f32+Mn6Ec69dw5DHIYo5Nh27tyJ0tLSetupgqenJxO5+vr6THsmGnEmaWlpzHKY1lXpTFvx\n9/fHkydPmOpYvHgxTEyq79ItLS3FX3/9pbLcgtICLPFdggOTD9RYsnPPnj211lzm8/myv1ffvn0R\nHx+PpKQklJWV4eTJk9VSeaakpGD69Onw9vZW6Ok6ZMgQuaXxl4Uvsf7Wejj96YTvzv0Nw5BfYbo7\nE0mnl8OymXL5V+fPn8+sPvGnn37KRG7Pnj2Z1o7iEetHYg2sXr0a+fn52Lp1q7pVq0x6ejosLS2Z\nbcYiIrWULeWapb5Loc/Tx+5JuxssKzAwECtWrJDFhXz77bdycSFLly7FuXPnZCkrDA0N600DUVxe\njPNPz+NwxGE8ePkAU51mI2bHesRFmmPWrIos8G+80WDTGwUbNmxAfn5+nekYGgTTtaJa+OCDD2jT\npk2aUK0y3t7ejTLR0rFjxxQO/y8oKFAqwdLVhKvU/vf2VFBaIPc+6+0M9SGWiOlG4g1a4rOEWm9s\nTeO8x9HxyOOyZEwBARURq68bhw4donnz5jGTr5FhTmZmZq0JbRpCSUmJrAYP18ydO5fJBGl5eXmt\nFe25YOjQoQqvPIjFYly9erXedkFBQRCUCfCB3wfYNXEXzIzM5M5fu3ZNqRQKBw8ehEQiUbh9TUik\nEtxMuolPLnwC240uWLzBHxbCgfi+5ffwHueNWT1myZIxjR9fEbHaUDZs2NBwITVw4MABJgXU27Vr\nh6SkJM7lVqKR1Zy0tDTY2nJbIwQABAIBcnJyOJfLkmfPniE5ORnjxo1jIl+ZWB4LCwvMmDFDobZf\nXPwCwzoMw9udqy/PKlu2ZOzYsZBKpXJZ9xVBJBbhZvJN+Mb64p8HQTBKeActEj6H8PGf6PWmPmY4\nAm5TS5gNTSu3IXDNvHnzZLuxucTOzg58Pp9zuZVoZM7ExsYG9+/fZ5aukQUJCQlMelMsoQbMw0RG\nRsLBwaFacNmDlw/w2+3f8DTnKe4suSPrlQiFQsTHx6NXr14NtrsusoXZCIgPgF+cH64+v4quVl1h\nn/gtLv45AePG6mPaNODttwENlhXSWvh8PpydnZGXl8dEvkZ6Jnw+n1kiGFbcvn270TmTNWvW4Kef\nflLpWjs7O8THx6Nv375y7zc3bI6xTmOxf/J+ueHNs2fPmPQ2RWIR7qbexeVnV3DxcRgSyu5gZKeR\nmOQyCTsn7IR1C2sIhYDhTwCjDkiTwcLCAgKBAGVlZWx6a8xmY2pBIpEQACZ5TOLj46mgoKD+hlpE\nZmYmM9msykBwUTfnVby9vSkpKYlEYhHdSblDG4M9acjGZWQ0eQVZ9L1ELVoXUo8+eVRarvwkOKvN\nmTt37qScnBzO5ebk5NDOnTs5l0tEZGxszCwfT53OZNGiRWRtbU09evSQvXf//n3q168f9erVi/r2\n7Uv//vuv7Nz69evJ2dmZunTpQpcuXZK97+vrS25ubrR06VIqKysjAwMDBh+F6NatWwpVndcm1FUg\nqSH4+fnJrfJUOhOBQEDnz59vkOxMQSb5x/rTd5e+o+EHhlPL9S3JbXt/MmoppHYOhTR7XikdOkTU\nkH11rFbhysrKmDwUpVIplTGqg2Fubl5nIvSadm4nJCRQv3796K233qrz2jqdSXBwMIWFhck5k+HD\nh9PFixeJqKIg0YgRI4ioor6Lu7s7lZWVUWJiIjk5Oclu9HvvvUcSiYR+/PFHevDgARkZGSn40bWD\n4uJievHihabNUAqRSMTZF53P51NWVla193NzcxXuWUmlUkrJT6HzTwLp88N7acDnv5PZWzvJfLU9\njToyir67+h0FxAVQfkmF03pNE/8zx9LSstYHbm07t1euXElJSUl07dq1Oh9+dc6ZDB06tNpSko2N\njSwvaH5+vizvpo+PD2bPng1DQ0N07NgRzs7OuH//PgYOHAipVAqRSITi4mLo6+szixxkRUFBAWJi\nYpjscmbFjh07sHz58hqjXpWltgRLNYWzF5QWILkgGc/zniOOH4fYnFjE8mPxYM9iSBJGgAregnnb\nfDh3KcXC/s3x06fLYGlRPUJBN4HKBgMDA4jF4hrPVd25DUC2c9vAwAACgQACgaDO367SE7AbN27E\nkCFDsHLlSkilUty9exdAxXJv1QxnVXd9fvjhhxg6dChGjhyJDh06MHMmYWFh6N27N+eRpO3atUO7\ndjUX1W4omZmZTCajv/zyS85lAsDvv/+O08GnYemyEi+fm6OokIfCfAMI8o1Rmm+OZjM+hFNPPjq1\n7gQXCxf0t+uPeW7zUNzBHY62FnByApo1qzm72rp16/D9999zbvPatWvxww8/cC73ypUrMDMzw4AB\nAziXzcpmsVhcqzOpaef2/fv3sWrVKsybNw+tWrXCsWPHapWttDNZsmQJ/vzzT0ybNg3//PMPFi9e\njCtXrtTYtvJHPWrUKFndjlfXuSs3jVVua2/I8YsXL1BQUAAej8eJPHUcb9iwAVOnTtUae+o7fvLk\nCeLC4tC1eTTs242ARRdDiAsj0a5Nc0yb8Dbe6B6E+/dvVpPRQv8xunatW8eCBQuY2Gxubo6goCDO\n74mVlRVMTEyY3POqe2i4lM/j8WrNUl/bQ9je3r7a5s4aqW+MlZiYKDdnYmpqKvu/VCqVZW/asGED\nbdiwQXZu7NixdO/evWryCgoKqEWLFvWp1Spe9zmTV2GxmqNDPVhbW1NaWlqN5xTJ6F8XSofTOzs7\n4+bNiifP9evX4eLiAqAi6vHEiRMoKytDYmIi4uPj0b9//2rXGxgYNDh0Wt0IhUKmqQ1Y4OXlhays\nLE5kCYVCFBYWyo4rn3hCoVAjlQN1qI5EIql1mkGRndt1UpenmTVrFtnY2JChoSHZ29vTgQMH6MGD\nB9S/f39yd3engQMHUlhYmKz9unXryMnJibp06SJb8XkVkUjEbGk4NjaWWakAVnBZ5oEVp0+frnHV\nhs/n04kTJzjRER4eTnfv3uVE1qtUDVPgkoSEBCouLuZcrlgsZvY9rm9pOCAggFxcXMjJyYnWr1+v\nlOwmFbR2584dpkFgLGAVnMQSFsOcgoICEggEnMslIgoJqb0IWEMIDAxUape1oqSnp5O3tzfncomI\nTExMmAWtaWRvjoGBAYqLi5ltwGJBfHw8OnfurGkzlCIvL6/ebGS1IRQK8fz5c/Ts2bPauaqTmZXE\nxMTA1ta22l4eHdoDEcHIyAhFRUVMdsBrJAVBmzZtOBvPq4v6kvBoI4cPH1Y5HWRMTEytBbJqSijd\ntm1bxMTEqKRLh3rIz8+HiYkJs1zDGnEmdnZ2THJRFhUVMUvbOHfuXCZyS0tLmTnWFStWqBxz07dv\nX6XiXywsLFSupHj79m3cuHFDpWvr48mTJ8xyeLBKtSkQCJTKB6Mo6enpzNKlAhpyJra2tsxyUbLM\nccmC8vJyXL9+XdNmAKgY2vj7+9fbrr6Yg4sXLyq1yjNw4EAMGzZM4fbKYGhoyKzsJqtEXP7+/kzy\n8rx8+ZJpVQiNOBNra2skJCRwLtfU1LTGMgpcEB8fz+RpYWpqyrT+a1pamlzW97ooKSlBv379Gqyz\nf//+KC4uVri9vr6+0omRFKVLly7MnMk777zDRO6sWbOY9CDS09PlIly5RiPOxN7enmnKfRakpqYi\nNzdX02YoTatWrRR23G3atFFoaFNf4XILCwuFfwzPnj1TqJ2OhpOens50f5nGhjn5+flMZLOaKPXw\n8GCW0CknJ4fZvEnz5s3r/PE3tNRFfezevbvWkpTl5eWybRYsSE1NRUhICBPZ8fHxcoF8XMIqtWKT\nnDNhWaYwOzubiVyWlJWVMRt/V6WmPRlGRkaYN2+eUnIU2qfx/8yePbvWncuVNYVZYWxsjC5dujCR\nnZyczCRPK4A6N9M1hMePHzc9Z2Jra8usezthwgQmcgEgPDyciVxbW1tmE5CVZGRkYM+ePdXe5/F4\nTGNDzMzMaqydq44tFW3atIGVlRUT2aNGjUJzLlLc18Bnn33GRG5paSmT1JqVaKxn0hjnH5KTkzVt\ngsq0a9cOy5YtA1ARvLR69WpOC5fXR1Wdd+7c0ZoVrNeJrKwspj0TjUTAisVimJiYoKSkhPOuokgk\nwqNHj5jkmGCJRCJBUFAQRo4cqRZdPB6vxh4DS6RSqdp0Hj16FB4eHkyexOnp6SgqKpJtcuWSzMxM\nWFpacv67ICK0aNECmZmZMDU15VR2JRrpmRgYGMDKyopJTEizZs1qrW2rzejr6zOLTKyksoi4j48P\noqKiVJajzJxJVapOurMq+l3J5MmTmXXpi4qKmA1x/Pz8mJSJzc3Nhb6+PjNHAmjImQBAt27dmMy0\n83g8pk93VpGaQEWhbZbs2bMHRUVFmD59eo17bliSmJgo+3uXlJTg77//ZqqP5Y/GxcWF2RLr0qVL\nmcTchIeHM69ppDFn0r9/fzx69EhT6lWmMRYXr+Szzz6DmZl8Kc+HDx/i8ePHSslRZc6kU6dOstwY\nJiYm+OKLL5SWoSiNbd+XOggNDa1WA4lrNOZM+vbt26Cudl3Exsbi+fPnTGSr8kNSBn9/f0RHR3Mm\nTygU1hm30Lt3b5V3FteHj48PQkND62xTUFDAaYIloVCICxcucCbvVZ48ecJs/1dubi6z8rahoaHo\n06cPE9mVaMyZ9OnTB6GhoSqvKNSFpaVlrUlztZ0xY8ZwWjnw+vXrdS7D6uvry4VY//7777UGmVVS\n25wJEcmF7k+ZMqXeL7BEIsG1a9fqbKMMLVq0wKJFiziT9yrGxsbMhjjR0dHMitjfunWLuTNRe3Kk\nSqRSKbVu3ZpSU1M1ZYLKHDt2jCQSiabNYEJ5ebkscVVJSQkdPXq0WpvK5EhlZWUUHR0tez8lJaXW\nDHs6NEdubi6Zmpoyq/BYicZ6JjweD3379q23G6yNDBw4kHnPJyoqSuVem1AoRFhYmErXGhgYyOaF\njIyM5CaFCwsLsWXLFtlQTyQSyW3vb9++PcaOHauSXqAiQlPVIQ8RMYscbeyEhoaiV69ezDZTVqIx\nZwIA/fr1Y+ZMwsLCEBcXx0R2p06dmGeJKywsRGpqqkrXJiQkcNIV5/F4cHBwkB2bmZnhv//9r+y4\nZcuWGD9+fIP1VGJvb69yZLRUKuVkx3Nd/Pnnn8widzMzM5kFRT58+JD9EAcadiaV8yYscHR0ZLo8\nCIDJfE8lgwYNUnm7uJubW61Z0rhA1TiT+rCwsFD5S6+vr888reb777/P7OmekZHBbKXQ39//9XAm\nd+/eZfKjbNWqFdPQ4ZcvX+LgwYPM5FcilUoVuj9CoRDnzp1jbo+68PPzU3jIEx8fz9iaClitegGA\nu7u7XC+QS9LT09XiTDQSTl8JEcHKygoRERGymsWNifLycuZ1k8PCwpCWloaJEyfW2a6goAAikYhp\nj0Sd5ObmQiqV1psZLCMjA5GRkRg9ejRTewoKChplsuy8vDx06NABeXl5TXvOhMfjYdCgQbh16xYT\n+VlZWfD29mYiG4BaCrC/8cYbCu2ENjc3bzKOBKgY8iiSYrBdu3bMHUlqaiouXrzITH5QUBCz3CjX\nr19Hv379mDsSQMPOBAAmTpwIPz8/JrKtra2ZpiQA1NPFrm0sXVZWhm3btjHX/yqs5kxqY8eOHdXS\nQBYVFdVaM5dr7O3t8d577zGT37JlS2bze/v372f+G6hEa5wJi/yqANtxLgDExcWpLZ3C+vXr5VYT\nmjVrhqVLl6pFtyZZtGhRtQRLx44dUyrPrDbTt29fJpOvUqkUYWFhmDJlCueya0KjcyaV9OvXD56e\nnsySQYtEIuY7ctWBWCyGgYEBiKhR7xFqCOr+7JcuXWpQ7IwmuX//PhYvXsxs28qraLxnAlRsF2c1\n1AGALVu2MJOtTipzXKxdu7bRbhdoCCKRCF9//TXTJfmqEFG1jZFcs2PHDmayT548iUmTJjGTXw2m\n8bUK8ujRI3JycmJSf1hd7NmzR232FxcX08aNG9WiqyZY1BpWhCtXrtDz5881opsV2dnZzGQ7OTnR\nnTt3mMl/Fa0Y5hARbG1tce3aNXTr1k3T5qhEeno62rZtyyyTWElJCYyMjNSeHa0maqo1rG6ICCUl\nJcySFKlj2Z8liYmJGDhwINLS0tSykgNoyTCHx+NhxowZ8PX1ZaYjISGh3t2wDcHGxobpD93Ly6vG\n5UORSKS2MXEl6nQkUVFRNZYvEQqFzIIGiQi//fYbE9mVlJeXQyQSMZPv5+eHCRMmqM2RAFriTICK\neROWzkQikTDLcVIVVkvFH374YY2V6QwNDZt0IauWLVvWGL3ZsmVLfPLJJ0x08ng8/PDDD0xkVxIc\nHMysVjFQsdpVmYxKXWjFMAeALHozPj6+UQdf/fPPP5g0aRKMjY0bLEsoFKKoqAjt2rVT+Bp1JG1m\nPcwpLCyEkZGRwitwOTk5MDQ0bJQRqiwoKCiAnZ0dMjMz0aJFC7Xp1ZqeiZGREUaNGoWjR49q2pQG\nMXPmTE4cCVCR0EbZZdDNmzc3+vgLX19flJSUKNxeT08PwcHBDdZbVlbWJNIY+Pv7Y/jw4Wp1JAC0\nYzWnkgsXLlDfvn2Z6jhw4IBaVl20YWVKG2xQlMLCQk2bQCUlJfTy5UvmeoKCgpjKHzZsGP3zzz9M\nddSE1vRMAGDs2LHg8/l48OABMx2jRo1SS5yCj4+PShUAhUIh7t+/z4kNDx48YJoPlSuysrI42/Ec\nGhqqcoIlY2NjphXvgIoSHyxXiR4/fozY2Fi1Rb1WRWvmTCr57bffcPv2baaTseqCVIjWjImJgYWF\nBaQUcvIAABjCSURBVJMi6S9fvuRkdzYXcyYRERFwcHDgfLtDbm4uXr58qVQpj4yMDAgEAjg7O3Nq\niyb46KOP0LZtW6xevVrturWqZwIAS5Yswc2bN5lVggcqfuSsdmlWRZWw765duzJxJEBFeDXL+6oM\nRUVFTMb0FhYWStcESkhIYJr7Rl0UFRXh1KlT+PDDDzWiX+ucSZs2bTBlyhQcOnSIqZ69e/cylV+J\nWCzG5s2b62wjFApx8uRJ5rZMnz4dlpaWACq62xs2bFBJjiq9kitXrsgVXRsyZAjz1JdnzpxRaMgz\nePBgtUxWrlu3jql8Ly8vvPXWW5rLDaT2WRoFuHv3Ljk5OTWZDPBCobDO8wKBgDIzM9VkTc2kpqbS\n7t27ZccSiUSpCVypVEolJSWy49DQUDp//jynNioLn8+ngoKCWs9HRkaq0Rqi0tJSZrKlUik5ODjQ\ntWvXmOmoD63rmQDAgAEDYGJi0igmDxWhvpDvFi1aaDy2xs7OTq57nJSUJJdYKi4uTrZsHxQUhLi4\nOLll1KdPn8olEHrjjTc0MglYFQsLi1o36pWVlak92I/lzvWQkBCYmJgw23mvEBpzY/Wwd+9emjRp\nElMdUqmUvLy8mOqoSkhICN28eZOIKurTeHp6qk03l2hqo19D2LJlC9OeQV2oY7PdrFmzaNu2bcz1\n1IXWreZUIhQK4eDggLCwMHTo0IGZnmfPnql1Fr+kpESW6Kfq/3WwpfJeR0ZGwsnJidkGwZq4ePEi\nxo0bx0x+eno6unbtiqSkpBq3XKgLrRzmABVd/3nz5jHPRaLu5cDK6Fgi0jkSNVJ5r1+8eMFZhLKi\nsHQkQEW+nhkzZmjUkQDQ3mEOEVFycjKZmZlRWloac13Pnj1jroOI6Ndff6Xy8nLy9vamuLg4tejk\nmsY4zKlEIpHQ6tWr1aKrrKyMuY6cnByytLTUiu+S1vZMAMDBwQFLly7FmjVrmOu6ffu2WiJjf/jh\nBxgYGGDu3LlNIkiqMXDp0iVZdUQ9PT38+OOPzHWKRCJs3bqVuZ4NGzZg5syZzAuQKYLWzplUwufz\n0aVLF9y7d6/R/viKi4vRrFkzWdrFV0lISICjo+Nrm9eVNUlJSejYsWO196VSKYqLi9GyZUv1G8UB\nKSkpcHNzQ0xMjFYE3Wl1zwQALC0t8fnnn+Pjjz9Wiz4WvvXEiRN1Bk9lZGSoJdfK64REIpH9LWty\nJAAgEAga9S7hX375BcuXL9cKRwJAu+dMKhEIBNS2bVsKDQ1lrmvnzp2UkZHBXE9jpjHMmezYsYP4\nfL7a9SYmJpKfnx9zPVFRUWRlZUV5eXnMdSmK1g9zKtm5cyd8fHxw6dIlpnqIo1IKQqEQfD5f6fqx\ngYGBsLa2VkttWFXRhhywXJOWloYWLVo0OMFSYWEhjI2NmW8VmDBhAjw8PLBy5UqmepRCw85MYUQi\nETk6OtLFixc1bYpCXL16VeUejkgk4tiapo9UKqWdO3eqvAWDz+c3mu/W3bt3qV27dlRcXKxpU+Ro\nNM6EiOjYsWPk6uqqlqQ/fD6f9u7dy1xPXSQnJ9OjR480akNjQpPD03PnzqllKVgqldLw4cNp3759\nzHUpi9ZPwFblvffeg7GxMc6ePctcl4WFBWbNmqXUNUKhUG5nbEOxs7OTKweqLai71nBtlJSUyN1v\nrlI33L17V+kES87OzmopjXHx4kVkZmZiwYIFzHUpS6NyJnp6evD09MRXX30FgUDAXJ+yS4bp6elw\ncXHhTL++vj7eeOMN2XF4eLjaqtk1BrKzs9G+fXvO5Xbp0gXp6elKXdOjRw/O7XiV0tJSLFu2DBs2\nbKg1zECTNJoJ2KrMnz8fQqEQZ86cUYu+Y8eOYcyYMWjTpo1a9NXGpUuXMGzYsNc6DD80NBQdO3aU\n5WXRJHl5eYiOjsbgwYPVom/VqlVISEjA6dOn1aJPaTQ8zFKJ3NxcsrW1VdsSZVFRkVyujqoIBALy\n9vZWix1Vefr0KUVFRaldr6a5c+cOicVitek7fvw45efn13guNjZWbUuzd+/epbZt22o8701dNEpn\nQkTk7+9Pjo6OVFRUpFE7SktLmdaLrQ2RSKT25D6VqDPOJCEhgc6dO6c2fa+Sm5tbb3Ir1pSUlJCT\nkxOdPHlSo3bUR6OaM6nKhAkTMGTIEHz66adq00lE1fZbGBkZaWT406xZM7lx+qFDh5CYmKh2O1hA\nVUbe1tbWmDhxosZsad26tVy6AiLC+fPn1WrDjz/+CDc3N7z77rtq1as0GnZmDSI3N5fatWun1idl\nbm4uSSQS2rBhg9p0KkrlkrlUKqWwsLBGVTenkvLyclqzZo1W2v7bb7+RQCBQa4+wMQxvKmnUzoRI\nc8MdkUiklV94oopt9j4+PrIALrFYrNX5dPfu3Uvp6emaNqNe1B1MWFJSQq6urlo/vKmk0Q5zKqkc\n7qxatYq5LqlUKvu/WCzGpk2bmOtUBT09PUyePFlWc5jP52PPnj2y81U/hyo0NM4kKCgIkZGRsuP5\n8+crVU9Z3RARtmzZIhdH0tB7qAiff/45XF1dtX94U4mmvRkX5ObmkrW1NV29epWpnvXr18s9nbS1\nZ1IfMTExdOLECdlxVlaWUtGjyg4rr1y5QiEhIbLj7OzsRnfvqma5F4vFtGbNGqb6GtPwppJGGWdS\nExcuXMDHH3+MBw8eqD3Te1lZGYRCIefV6dRFcnIyMjMz0b9/fwDAnTt3UFRUhLFjxwKoqDJYXl4O\nNzc3AMDz588hEonQtWtXABXFvYqKijBq1CgAwM2bNyGRSPDWW28BqHiKV/aSGhNisVgjwWF5eXno\n378/1q9fj5kzZ6pdv8po2ptxyQ8//EBDhgzhdGwrEAjqzWpeUFBAR44c4UyntsHn8+VSZ6alpVFy\ncrLsuKysTKvnZFRl3bp19ca0lJeXc1p0vby8nNzd3WnFihWcyVQXTaZnAlQ8AadMmQIDAwOcPXuW\nk1QC3t7eGDdunMajX7WJppiCQFXy8/Nx7tw5LFq0iBN5X3zxBaKiohAQEKCVIfN10fj6nnWgp6eH\nY8eOIT4+Hjt37uRE5rx585RyJAKBAEeOHOFEtw71c/nyZaX2P7Vq1YozR3Lw4EFcuHABJ0+ebHSO\nBEDTGuZUkpCQQG3btlW5VKJAIGhQtnp1ZNPXwT1SqbRBBbOSkpJqDb2vj6CgILKwsKCYmBiV9Wua\nJtUzqcTR0RHHjx/HzJkzkZCQoPT1YWFhMDU1VVl/1Zycyu4+1aF+ysrKAAA8Hg+DBg1SWY6pqSlC\nQ0OVvu7FixeYM2cOvLy84OrqqrJ+TdMknQkAeHh4YPXq1ZgyZQqKioqUunbo0KGcrAgREfz9/dUS\nk6BOtCWfCRfw+Xzs37+fE1kWFhayFSxFKS4uxtSpU7FixQq8/fbbnNihKZrUBOyrEBE++ugjZGRk\n4Ny5c3UuTwqFQty/f1/pL8PriG4Ctn6Cg4Ph7u5eZ05ZIoKHhwfs7e3h5eXV6EudNNmeCVDRbd2+\nfTtyc3Mxb968Otvy+Xx0796dqT1HjhxRadilbTR2R3L79m1cv36dqY4ePXogJyenzjZr166FUCjE\nvn37Gr0jAZp4z6SS7OxsDBkyBIsXL1ZL2L0O7aa8vFwtKRbrYvv27fjjjz9w69Yt2NraatQWrmjS\nPZNKrKyscP36dezduxfbtm2TvV9cXIyDBw9qxKaEhAQcPXpUI7obSmOcM9m1axdKSkoAQO2OxMvL\nC4WFhbLjNWvWwNPTE9evX28yjgRA01waro2kpCSyt7eX7asoLy+nnJwcjdmjzoxhXNIYinC9Sm5u\nrkZ1V0ZlHz58mGxtbSk+Pl5j9rDitXImRETPnj0je3t72r9/v6ZNkeOPP/7QSAW6psrTp0/pzJkz\nmjZDjuPHj5ONjQ1FR0dr2hQmvBZzJq8SGxuLUaNG4YcffsCyZcs0bQ6A/2UXawoTcdpAaWkpjIyM\ntOZ+/vnnn1i3bh2uXr2Knj17atocJrwWcyav0qVLFwQFBWHNmjVYv369ps0BUOFEKr/4iYmJOHTo\nkGYNqgNtnTNZt24dRCIRAMDY2FhrHMmePXvg6emJoKCgJutIALxecyavkpSURI6OjrRx40ZNm1In\n0dHRtWbH1wTaMmciEom0fmi4detWcnBwaJJzJK/yWvZMKunQoQOCg4Nx8OBBfPnll1odqZqUlKRp\nE2RoS5zJjRs3kJeXp2kzaoSI8OOPP2Lr1q24efMmnJ2dNW0SezTtzZQhJSWFRowYQd26daPu3bvT\ntm3biIho5cqV5OrqSm5ubjRt2jTZZqvExEQyNjamXr16Ua9evf6vvfuNaep64wD+ZYLKhrItslpg\nDAIqLUoLhVYSGaKwOBmEgRHZIJsBSeayRBc3zJYte0HmsjeLxrEsJsSEsQlzE0qHSXUGhspAChnj\nj1gEU6EwyHT8q0Jbnt8L4s06/ClIoS08n1ece2/bc8vl4Zx7zzkPvfPOO8J7qdVqCg8Pp9zcXPrr\nr79IpVJRcnKyw1NnzMbnn3/uVC2VxaLX66m4uNjR1Xis8fFx2rdvH0VHR1NfXx/du3ePlEolyWQy\nkkgkdPToUSIiKisrI6lUSk899RTpdDrh9bO9bp2NSwWT/v5+am5uJqLpxFgbN26k9vZ20mq1wuI8\n+fn5lJ+fT0TTv5TNmzc/9L0yMjLIarXSJ598Qq2trXT//n3KycmhLVu2UHd39+KckB3cvXuXzp8/\nv6ifuVjdHIvFQjU1NULZFRZgMhgMFBYWRm+++SaZTCZh+4PcO2azmVQqFdXW1lJHRwd1dnbS9u3b\nZwST2V63zsSlujnr16+HXC4HMJ0HWCKRwGg0IjExUZh3o1Kp0Nvb+9j3mpqawsTEBEwmE1auXIlV\nq1bh1KlTOHDgAKKjo6HVahf0XOxl7dq1CAwMFMoDAwMuPWS/u7sbFotFKP/7JqqzL/1YV1cHlUqF\n7OxsFBcX26RxfZB7Z3JyElarFc8//zxCQ0PnnJv6v9etU3F0NHtSPT09FBAQMKNb8tprr1FJSYlw\nzDPPPENyuZzi4uKotrZWOO7ChQukUCjoww8/nPHeFy9epBdeeIEKCwsX9iQWwJ07d+j3338Xyj09\nPWQwGBxYo0fr7u62WfawrKzssctkOqOioiLy8fGhX3755aH7rVYryWQy8vLyog8++MBm38NaJk9y\n3TqaSwaT0dFRUigUM9JGFhQUUFpamlCemJgQRj7qdDp68cUXZ71eZ1dXF0mlUsrLy1v0fCn2ZDQa\nbZJG/fbbbw5LK0pEdOXKFbp165ZQ1mq1T7ygkDMwm82Um5tLQUFBs1rY6J9//iGVSmXTVfxvMJnP\ndetIzt1ufAiz2Yz09HRkZWUhNTVV2H769GlUVVXZzHdZuXKlsGJ8ZGQkgoODodfrZ/U5wcHBqKur\nQ29vL+Li4jA0NGTfE1kkYrHYJo2oUqmEn5+fUK6qqkJ9fb1QbmhosEkzOj4+btPtAGzHmVgsFmFx\nIWB6Yal/P3k6e/YsWltbbeojEomEcmJi4iOn6Tuzu3fvYvfu3TAYDNDpdLNa2Mjb2xtJSUlobGz8\nv8fM57p1KEdHs7mYmpqi7OzsGSt3nz9/nqRS6YwE4kNDQ8L8l5s3b5Kfn9+cs9ZbrVb66KOPKDAw\n0Ka5uVT19/fbzFfSarX0xx9/COXy8nL69ttvhbJGo7Fp6fT09Mz5O3ZFly5dopdeeonef/99MpvN\njzx2aGhI+E5MJhPFxsba5Hjavn07NTY22hw/3+vWEVwqmNTW1pKbmxvJZDLhsVlVVRWFhIRQQEDA\njEdpZ8+epbCwMJLL5RQZGUkajeaJP7u8vJxEIhFlZmYKd+bZ8nPv3j3Kz88nHx+fWaftbGlpoYiI\nCJLJZLRlyxb68ssviYjo559/Jn9/f1q9ejWJRCLatWsXEdn3ul1My3JuzpP6+++/8d5776GxsRFF\nRUXYtm2bo6vEFtHVq1eRm5sLiUSCwsJCm+4ag2t1c5zFuXPnSCwWU1ZW1rJspTjLcPrF8qA1sm7d\nOjpz5ozLpTZdLC53A9YZpKam4s8//4TZbIZcLsfly5cdXSW2QBoaGhAZGQm9Xo/W1lZkZGQ4zQRC\nZ8PdnHkqLy/HwYMHkZSUhOPHjwuDk5hru3//Pj799FMUFRXh66+/xt69ezmIPAa3TObpQStldHQU\n4eHh0Gg0c8oIx5wLEUGr1UKhUODmzZtoa2vj1shsObaXtbRoNBqSSqUUExNDly5dcnR1FsxSvWdS\nX19PCoWCgoOD6aeffuJ7I3PELRM7SkpKQktLC/Ly8pCdnY2UlBSbAVvMOXV2dmLPnj1IS0tDXl4e\nrl+/jrS0NG6NzBEHEztbsWIF3n77bXR1dSE+Ph47d+5EWlqaU61HMl/Osp7JfPX29iI3Nxdbt25F\nVFQUbty4gby8PNdMGu4EOJgskNWrV+Pw4cO4ceMGpFIpFAoFDh8+7LLD8peSO3fu4MiRI5DJZFi3\nbh26u7tx9OhRvnk+TxxMFpi3tzcKCgrQ3t4Os9mMTZs24a233nLphObOugbs4wwODqKgoAAhISEY\nHh5GS0sLvvjiC2EeDJsfDiaLRCQS4eTJk7h27RpWrVoFqVSKjIwM1NTU8NOfBUREqKmpQVJSEjZu\n3Iju7m7U1dXh1KlTNhMe2fzxOBMHGR4eRnFxMU6cOAEiwqFDh5CdnY21a9c6umpLwtjYGL7//nsU\nFhZibGwMBw8exP79+7kVsoA4mDgYEaG6uhqFhYX49ddfkZCQgI8//hgymczRVXNJHR0d+Oabb3D6\n9Gns2LED7777Lnbu3On0q7QtBfwNO5ibmxvi4+Px448/orW1FVKpFLt378bLL7+MkpISDA8PO7qK\nMzjbPZPR0VGcPHkS27Ztw44dO+Dt7Y22tjaUl5fbLOnJFha3TJyQ2WyGWq1GUVERqqurERMTg5SU\nFCQnJyMoKMjR1UN1dbXDHw8bDAZUVFRAo9Hg6tWr2Lp1K3JycpCWluZ8a6MuExxMnNz4+DguXLgA\ntVqNyspKeHt7Y9++fUhJSUFUVNSy+a9LRGhqaoJarYZarYbBYMCrr76K119/Ha+88grWrFnj6Cou\nexxMXIjVakV9fT0qKyuhVqsxODiI2NhY7N+/H7GxsXj22WcdXUW7GhkZweXLl6FWq1FRUQFPT0+k\np6cjJSUFMTExPLjMyXAwcWFdXV1Qq9XQaDRoaGjAc889B5lMhri4OCgUCkRGRi5IgFmIbs7IyAia\nmpqg0+mg0+lw7do19Pb2QqlUIjk5GcnJydi0aZNdP5PZFweTJcJqteL69evCH6NOp0NTUxNEIhGU\nSiUUCgXkcjmio6Pn/Xh0vsFkeHgYzc3NqKqqgsFgQFNTE/r6+hAaGoqYmBhERUVBoVBAIpFw68OF\ncDBZwqxWKzo7O9HY2AidToe6ujp0dHQAmF4l3tPTEyEhIQgMDIRYLIaPjw8CAgIgFovh6+uLNWvW\nzGmy2+joKIxGI/r7+2E0GtHR0YHx8XEMDAygv78fer0eIyMjsFqtkMlkiIiIQHR0NAeOJYKDyTJD\nRBgZGRH+4Pv7+4WfDQYDBgcHMTAwAKPRCLPZDE9PT7i7u8Pd3R1TU1N4+umn4ebmBovFApPJBGA6\naE1MTAAA/Pz84OvrC19fX4hEIvj7+0MsFgsBSiwWw9vbm2fkLkEcTNj/ZTKZMDk5CYvFArPZDIvF\nAovFAiKCh4eHEGQ8PDzg4eEhBBq2PHEwYYzZxfIYpMAYW3AcTBhjdsHBhDFmFxxMGGN2wcGEMWYX\nHEwYAOD27duIj49HWFgYNm/ejBMnTgAAMjIyEBERgYiICAQFBSEiIkJ4zbFjx7BhwwaEhoZCq9UK\n2ysrKyGTyXDgwIFFPw/mODzkkAEAPDw88NVXX0Eul2NsbAwKhQKJiYkoLS0Vjjly5Igw16e9vR2l\npaVob29HX18fEhISoNfr4ebmhpKSEjQ3N+Ozzz5DW1sbwsLCHHVabBFxy4QBANavXw+5XA4A8PLy\ngkQigdFoFPYTEcrKypCZmQkAqKioQGZmJjw8PBAYGIiQkBDU19cDAKampjAxMQGTycRriywjHEzY\nDLdu3UJzczNUKpWwrba2FiKRCMHBwQAAo9EIf39/Yb+/vz/6+voAAHl5eYiNjcWKFSuwYcOGxa08\ncxju5jAbY2Nj2LNnD44fPw4vLy9h+w8//IA33njjka99MJQ+ISEBjY2NC1pP5nw4mDCB2WxGeno6\nsrKykJqaKmy3WCw4d+4cmpqahG1+fn64ffu2UO7t7eXUEcscd3MYgOl7Ijk5OZBKpTh06JDNvosX\nL0IikcDX11fYlpKSgjNnzmBychI9PT3Q6/VQKpWLXW3mRLhlwgAAV65cwXfffYfw8HDh8e+xY8ew\na9culJaWCjdeH5BKpdi7dy+kUinc3d1RWFjIM4aXOZ41zBizC+7mMMbsgoMJY8wuOJgwxuyCgwlj\nzC44mDDG7IKDCWPMLjiYMMbs4n+vNvwywIT7aAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7f9dca6680d0>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-12.1, Page number: 541</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "from math import pi,acos,sqrt,log10,atan\n",
      "import cmath\n",
      "import numpy as np\n",
      "from pylab import *\n",
      "\n",
      "#Variable declaration\n",
      "f = 60e6    #Frequency(Hz)\n",
      "dep = 20    #Depth of antenna location (m)\n",
      "sigma = 1.33e-2    #Conductivity (mho per m)\n",
      "eps0 = 8.85e-12    #Air Permittivity (F/m)\n",
      "epr1 = 80    #Real part of relative permittivity (unitless)\n",
      "alphat = 10    #Elevation angle (degrees)\n",
      "cl = 1    #Circumference (lambda)\n",
      "pitch = 12.5    #Pitch angle (degrees)\n",
      "c = 3e8    #Speed of light (m/s)\n",
      "\n",
      "dir_gb = 3    #Directivity of George Brown turnstile (unitless)\n",
      "Aer_gb = 6    #Effective aperture of George Brown turnstile (unitless)\n",
      "r = 1e3    #Distance between transmitter and receiver (m)\n",
      "Pt = 100    #Transmitted power (W)\n",
      "\n",
      "\n",
      "\n",
      "#Calculations\n",
      "epr11 = sigma/(eps0*2*pi*f)    #Loss term of relative permittivity (unitless)\n",
      "epr = epr1 + 1j*epr11    #Relative permittivity (unitless)\n",
      "alphac = acos(sqrt(1/epr1))    #Critical angle (degrees)\n",
      "alpha = acos(cos(radians(alphat))/sqrt(epr1))    #Angle of incidence (degrees)\n",
      "\n",
      "n1=12    #Number of turns\n",
      "rad = cl/(2*pi)    #Radius of loop (lambda)\n",
      "sl = tan(radians(12.5))\n",
      "hpbw1 = 52/(cl*sqrt(n1*sl))    #Half power beamwidth for 12 turns(degrees)\n",
      "dir1 = 12*(cl**2)*n1*sl    #Directivity for 12 turns (unitless)\n",
      "n2 = n1*2    #Number of turns\n",
      "hpbw2 = 52/(cl*sqrt(n2*sl))    #Half power beamwidth for 24 turns(degrees)\n",
      "dir2 = 12*(cl**2)*n2*sl    #Directivity for 24 turns (unitless)\n",
      "num = 20    #Number of turns chosen\n",
      "\n",
      "p_perp = [(sin(theta)-cmath.sqrt(epr - cos(theta)**2))/(sin(theta)+cmath.sqrt(epr - cos(theta)**2)) \\\n",
      "          for theta in arange(0,pi,pi/180)]\n",
      "                            #Reflection coefficient (unitless)\n",
      "p_pall = [(epr*sin(theta)-cmath.sqrt(epr - cos(theta)**2))/(epr*sin(theta)+cmath.sqrt(epr - cos(theta)**2)) \\\n",
      "            for theta in arange(0,pi,pi/180)]\n",
      "                            #Reflection coefficient (unitless)\n",
      "\n",
      "Sr = 0.5*(np.absolute(p_perp)**2 + np.absolute(p_pall)**2)    #Relative power density reflected (unitless)\n",
      "St = 1 - Sr     #Relative power density transmitted (unitless)\n",
      " \n",
      "theta = arange(0,pi,pi/180)\n",
      "subplot(1,2,1)\n",
      "plot(theta,St)\n",
      "xlim([0,pi/2])\n",
      "title(\"Relative power vs Elevation angle\")\n",
      "\n",
      "\n",
      "subplot(1,2,2, polar=True)\n",
      "plot(theta,St)\n",
      "title(\"Pattern of transmission\")\n",
      "\n",
      "wave_lt = c/f    #Wavelength (m)\n",
      "diam = wave_lt/(sqrt(epr1)*pi)    #Submerged helix diameter (m)\n",
      "att_cons = (pi*epr11)/(wave_lt*sqrt(epr1))    #Attenuation constant for water (Np/m)\n",
      "att_d = 20*log10(exp(-att_cons*dep))    #Attenuation in the water path (dB)\n",
      "Dir = 12*(cl**2)*num*sl    #Directivity for 20 turn helix (unitless)\n",
      "Ae = Dir*(wave_lt**2)/(4*pi)    #Effective aperture (m^2)\n",
      "\n",
      "Pr = Pt*Ae*dir_gb/((r**2)*(wave_lt**2))    #Received power(W)\n",
      "\n",
      "St = np.around(St,2)\n",
      "loss_inter = 10*log10(St[10])    #Loss at the interface for alpha = 83.68 (dB)\n",
      "tot_loss = round(abs(att_d + loss_inter))    #Total loss (dB)\n",
      "Pr_act = Pr/(10**(tot_loss/10))    #Net Actual received power (W)\n",
      "\n",
      "\n",
      "#Results\n",
      "print \"Half power beamwidth for 12 turns is \", round(hpbw1), \"degrees\"\n",
      "print \"Directivity for 12 turns is \", round(dir1,1)\n",
      "print \"Half power beamwidth for 24 turns is \", round(hpbw2), \"degrees\"\n",
      "print \"Directivity for 24 turns is \", round(dir2,1)\n",
      "print \"A helix of \", num, \"turns is chosen for reasonable compromise\"\n",
      "print \"The signal level at the distance of 1km is\", round(Pr_act,10), \"W\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Half power beamwidth for 12 turns is  32.0 degrees\n",
        "Directivity for 12 turns is  31.9\n",
        "Half power beamwidth for 24 turns is  23.0 degrees\n",
        "Directivity for 24 turns is  63.8\n",
        "A helix of  20 turns is chosen for reasonable compromise\n",
        "The signal level at the distance of 1km is 8e-09 W\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEKCAYAAADw2zkCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFFf3x79LU5HeBQRUjKAoIIhKRLBrEpTEblQUNSZq\nonlDLPG1JtZoivqq+LObiMYWrMQKGlGqYhdF6UW61IXdPb8/JkxYWNjCAqvO53nm2b0zt5yZnZ0z\n9557z+EREYGDg4OD451GraUF4ODg4OBoeThlwMHBwcHBKQMODg4ODk4ZcHBwcHCAUwYcHBwcHOCU\nAQcHBwcHmlgZ+Pj4YM+ePQqVTUlJga6uLriZr03DypUrMWXKlGZv9/fff8ewYcOavd3G0FLXioOj\nOZGqDOzs7KCtrQ1dXV1YWFhgypQpeP36tUyV83g88Hg8mfLa2dnh6tWrbNrGxgbFxcUyl+eoi5qa\nGnR0dKCrq8tumzZtarb2k5KSoKamBpFIxO779NNP8ddffzWbDMqAuwc53gWkKgMej4ezZ8+iuLgY\n8fHxuH//Pn744QelC8Lj8d7JXoBAIGjS+u/du4fi4mJ2CwwMbNL2JPGm/65vuvwcHLIg1zCRubk5\nhg4diocPH7L7bt++DU9PTxgaGsLFxQXh4eESyyYmJmLgwIEwMTGBqakpJk+ejKKiIgDAlClTkJKS\nAl9fX/btteZb5dGjR9GrVy+x+n7++WeMGjUKAMDn8xEYGAhbW1tYWFjgiy++QEVFhUQ59u/fj/ff\nfx9ffvklDAwM4OjoKNYjycjIwMiRI2FsbIzOnTtj9+7dAICKigq0adMG+fn5AIA1a9ZAU1MTJSUl\nAIBly5bh66+/lipPWFgYrK2tsXHjRrRr1w4zZswQk4/P58PAwEDsGufk5EBbWxu5ubnIzc3FRx99\nBENDQxgbG6N///5KeVjV9ztKu/bnzp2Dq6sr9PX1YWNjg1WrVrH5+vfvDwAwMDCAnp4ebt++jf37\n98PLy4vNExERgV69esHAwAAeHh64desWe8zHxwfLly9Hv379oKenh2HDhiEvL0+i/IWFhfjoo49g\nZmYGIyMj+Pr6Ij09Xea6Dh48CFtbW5iYmOCHH36o01OV5VpxcLzRkBTs7Ozo8uXLRESUmppK3bt3\np1WrVhERUVpaGhkbG9OFCxeIiOjSpUtkbGxMubm5RETk4+NDe/bsISKi58+f0+XLl6myspJycnKo\nf//+tGDBArF2rly5wqZfvnxJPB6PhEIhlZaWkq6uLj179ow97u7uTkePHiUiogULFtCoUaOooKCA\niouLydfXl5YsWSLxfPbt20caGhr0yy+/kEAgoKNHj5K+vj4VFBQQEZGXlxfNnTuX+Hw+3b17l0xN\nTenq1atERNS/f386ceIEERENGTKE7O3t2XP38vKiP//8U6o8165dIw0NDVq8eDFVVlZSeXl5HRkD\nAgJo6dKlbHrbtm00YsQIIiJavHgxff755yQQCEggENDff/9d72/H4/Ho+fPnEo+tWLGCJk+eTEQN\n/47Srn1YWBg9ePCAiIju3btH5ubm7HVISkpif8Oa179fv35ERJSXl0cGBgb022+/kVAopODgYDI0\nNKT8/HwiIvL29iZ7e3t69uwZlZeXk4+PDy1evFji+eTl5dHJkyepvLyciouLaezYseTn58ceb6iu\nhw8fko6ODt28eZMqKyspMDCQNDU12ftRlmuVk5NT7+/AwfEmIFUZ2Nrako6ODunq6hKPxyM/Pz/2\nz71+/XqaMmWKWP5hw4bRgQMHiEhcGdTm1KlT5OrqyqYbUgZERJMnT6bVq1cTEVFCQgLp6upSeXk5\niUQiatu2LSUmJrJlIyIiqEOHDhLb3bdvH1laWort8/DwoEOHDlFKSgqpq6tTSUkJe2zJkiU0bdo0\nIiJatmwZffXVVyQQCMjCwoK2bNlCixcvpvLycmrTpg3l5+dLlefatWukpaVFfD5fonxERJcvX6ZO\nnTqxaU9PTzp06BARES1fvpxGjRpV70O+Jjwej/T09MjAwIDdLl68SETiDzhpv2N9114S8+fPp6+/\n/pqI6v6GROLK4ODBg9S7d2+x8n379qX9+/cTEXP/rFmzhj22fft2Gj58uNTzJiK6c+cOGRoasumG\n6lq1ahVNmjSJPVZWVkZaWloSlYG0a8XB8aYik80gJCQEr1+/RlhYGK5evYqYmBgAQHJyMo4dOwZD\nQ0N2u3nzJrKysurUk52djQkTJsDa2hr6+vqYMmVKvV1+SUyaNAnBwcEAgMOHD+Pjjz9G69atkZOT\ng7KyMri5ubEyjBgxArm5ufXWZWVlJZa2tbVFZmYmMjMzYWRkhLZt27LHbGxs2OEGb29vhIWFIS4u\nDt27d8fgwYMRHh6OyMhI2Nvbw9DQUCZ5TE1NoaWlVa98Pj4+KCsrQ1RUFJKSkhAfH4+PP/4YAPDt\nt9/C3t4eQ4cORadOnbBhw4YGr9udO3dQUFDAbkOGDKmTR9rvWN+1B4DIyEgMGDAAZmZmMDAwQFBQ\nkMy/a0ZGBmxsbMT22draIiMjg01bWFiw39u0acMOy9WmrKwMs2fPhp2dHfT19eHt7Y2ioiKxIbT6\n6srIyIC1tbXYMWNjY4ntyHPPc3C8SchlM+jfvz++/PJLLFq0CADzoJwyZYrYw6a4uBgLFy6sU/a7\n776Duro6Hjx4gKKiIhw6dEhslom0GRuDBw9GTk4O4uPjceTIEUyaNAkAYGJigjZt2uDRo0esDIWF\nhQ3OeKo5lgwwf3BLS0tYWloiPz9f7IGTkpLCPij69u2Lp0+f4tSpU/Dx8YGjoyNSUlJw/vx5+Pj4\nyCyPtHNVV1fHuHHjEBwcjODgYPj6+rIKSkdHB5s2bUJiYiJOnz6Nn376qd6xbVmR9jvWd+0BRlH4\n+fkhLS0NhYWF+Pzzz9nfVdp5WllZITk5WWxfcnJyHWUtC5s3b0ZCQgKioqJQVFSE8PBwENPzlVrW\n0tISaWlpbLq8vLxehSbPPc/B8SYh9zqDBQsWICoqCpGRkZg8eTLOnDmDixcvQigUoqKiAmFhYXUe\ntgBQUlKCtm3bQk9PD+np6fjxxx/FjpubmyMxMbHedjU1NTF27FgEBgaKveGqqalh1qxZWLBgAXJy\ncgAwD/uLFy/WW9erV6+wZcsWVFVV4dixY3jy5Ak++OADWFtbw9PTE0uWLAGfz8e9e/ewd+9eTJ48\nGQCgra0NNzc3/O9//4O3tzcAwNPTEzt37mTTisgjiUmTJuHIkSM4fPiw2MP33LlzeP78OYgIenp6\nUFdXh7q6er31yPIwlPY71nftAeZ3NTQ0hJaWFqKionD48GFWCZiamkJNTa3e33XEiBFISEhAcHAw\nBAIBjh49iidPnuCjjz6SS/5qOdq0aQN9fX3k5+eLGbKl1TV69GicOXMGt27dQmVlJVauXFlvXnnu\neQ6ONwm5lYGJiQn8/f2xYcMGWFtbIyQkBGvXroWZmRlsbGywefNmiX+kFStWIC4uDvr6+vD19cXo\n0aPF3hyXLFmCH374AYaGhvjpp58A1H2znDRpEq5cuYKxY8dCTe1f0Tds2AB7e3v06dMH+vr6GDJk\nCBISEuo9h969e+PZs2cwNTXFsmXLcOLECRgaGgIAgoODkZSUBEtLS3zyySdYvXo1Bg4cyJb19vaG\nQCCAh4cHmy4pKWFnzsgijyzz1j08PKCjo4PMzEyMGDGC3f/s2TMMGTIEurq68PT0xNy5c1lFJAln\nZ2exdQb/+c9/WBmq5ajvd6zZc6vv2m/fvh3Lly+Hnp4evv/+e4wfP549pq2tjaVLl+L999+HkZER\nIiMjxdo1NjbG2bNnsXnzZpiYmGDTpk04e/YsjIyMJF6rhtatLFiwAOXl5TAxMYGnpydGjBhRJ299\ndXXr1g1bt27FhAkTYGlpCV1dXZiZmaFVq1YKXSsOjjcRHsn66iWB0NBQLFiwAEKhEDNnzmSHj2oS\nFhaGr7/+GlVVVTAxMUFYWFhj5G00+/fvx549e3Djxo0WlYNDdanu7Tx//hy2trYtLQ4HR7OgoWhB\noVCIefPm4fLly7CyskKvXr0wcuRIODo6snkKCwsxd+5c/PXXX7C2tm7QqMvB0ZKcOXMGgwYNAhEh\nMDAQPXr04BQBxzuFwr6JoqKiYG9vDzs7O2hqamLChAkICQkRy3P48GGMHj2aNcCamJg0TlolII+L\nDI53h9OnT8PKygpWVlZITEzEkSNHWlokDo5mRWFlkJ6ejvbt27Npa2vrOka0Z8+eIT8/HwMGDIC7\nuzsOHTqkuKRKwt/fH9evX29pMThUjP/7v/9jZ35dunQJnTt3bmmRODiaFYWHiWR5u66qqkJcXByu\nXLmCsrIy9O3bF3369OH+aBwcHBwqhsLKwMrKCqmpqWw6NTVVbOEOALRv356dd9+mTRv0798f8fHx\ndZSBvb19g9NKOTgag7OzM+7evdvSYnBwqDQKDxO5u7vj2bNnSEpKQmVlJY4ePYqRI0eK5Rk1ahT+\n/vtvCIVClJWVITIyEl27dq1TV2JiIrtAqLHbihUrlFaXsutT1bpUWTZl1BUfH6/obc7B8c6gcM9A\nQ0MD27Ztw7BhwyAUCjFjxgw4OjoiKCgIADB79mw4ODhg+PDh6NGjB7sYS5Iy4ODg4OBoWRRWBgCz\ngrTmgiiAUQI1CQwMbBEf+hwcHBwcsvPWxUCu9hGkivWpal3Krk9V6+Lg4KifRq1AVpoQ72iUM47m\ngbu/ODik89b1DDg4ODg45IdTBhwcHBwcnDLg4ODg4OCUAQcHBwcHOGXAwcHBwQFOGXBwcHBwgFMG\nHBwcHBzglAEHB0cT8N///hempqawtLRsaVEaxY0bN+Dg4KBw+ZSUFOjq6r4R61w4ZcDB0ULY2dlB\nW1sburq6sLCwwPTp01FaWiq1nI+PD/bs2SO2T01NDS9evGgqUeUiJSUFP/30E548eYKMjIw6x8PC\nwsRioagyXl5eePLkicLlbWxsUFxc/EYE1OKUAQdHC8Hj8XD27FkUFxcjLi4OMTEx+OGHH2QqJwlF\n3z4FAoFC5eojJSUFxsbGMDY2VrgOoVCoRIk4ZIFTBhwcKoClpSWGDx+OBw8eoLCwEB999BHMzMxg\nZGQEX19fNorg0qVLcePGDcybNw+6urr48ssv4e3tDYCJ26Crq4tjx44BAM6ePQsXFxcYGhri/fff\nx/3799n27OzssHHjRvTo0QO6urpITEyEmpoaDh48CFtbW5iammLt2rX1yltUVISpU6fCzMwMdnZ2\nWLNmDYgIly9fxtChQ5GRkQFdXV0EBASIlSstLcWIESPY43p6esjMzMTKlSsxZswYTJkyBfr6+jhw\n4ACio6PRt29fGBoawtLSEl9++SWqqqrYutTU1BAUFIT33nsPhoaGmDdvHnvs+fPn8Pb2hoGBAUxN\nTTFhwgSxcjt27EDnzp2hp6eH5cuXIzExEX379oWBgQEmTJjAtlO7F7NhwwZYW1tDT08PDg4OuHr1\nKgAmDLC7uzv09fVhYWGBb775BgCQlJQENTU1iEQiAEBGRgZGjhwJY2NjdO7cGbt372brXrlyJcaN\nGwd/f3/o6enByckJsbGxUu8dpUEqgIqIwfGWoqr3l52dHV2+fJmIiFJSUqhbt260fPlyysvLo5Mn\nT1J5eTkVFxfT2LFjyc/Pjy3n4+NDe/bsEauLx+NRYmIim46LiyMzMzOKiooikUhEBw4cIDs7O6qs\nrCQiIltbW3J1daW0tDSqqKigly9fEo/Ho88++4wqKiooPj6eWrVqRY8fP5Yo+5QpU8jPz49KSkoo\nKSmJ3nvvPVamsLAwsra2rve8JR1fsWIFaWpqUkhICBERlZeXU2xsLEVGRpJQKKSkpCRydHSkX375\nReycfX19qaioiFJSUsjU1JT++usvIiKaMGECrV27loiI+Hw+3bx5U6ycn58fFRcX08OHD0lLS4sG\nDBhAL1++pKKiIuratSsdOHCAiIiuXbvGyvrkyRNq3749ZWZmEhFRcnIye8379OlDv/32GxERlZaW\n0u3bt4mI2OsqFAqJiMjLy4vmzp1LfD6f7t69S6ampnT16lX2GrRu3ZouXLhAIpGIlixZQn369Kn3\nOiobrmfAwdFCEBH8/PxgaGgILy8v+Pj44LvvvoORkRE+/vhjtG7dGjo6Ovjuu+8QHh5ep2xD7Nq1\nC7Nnz0avXr3A4/EwdepUtGrVCrdv3wbADDV99dVXsLKyQqtWrdhyK1asQKtWrdCjRw84OztLDAwk\nFApx9OhRrFu3Dm3btoWtrS2++eYbNsa5NNnqO+7p6ckGyGrdujV69uwJDw8PqKmpwdbWFp999lmd\n67B48WLo6emhffv2GDBgABvRTktLC0lJSUhPT4eWlhY8PT3Fyi1cuBA6Ojro2rUrunfvjhEjRsDO\nzg56enoYMWIE7ty5U0c+dXV18Pl8PHz4EFVVVbCxsUHHjh3Z9p49e4bc3Fxoa2ujd+/edcqnpqYi\nIiICGzZsgJaWFpydnTFz5kwcPHiQzePl5YXhw4eDx+Nh8uTJzRqYiVMGHBwtBI/HQ0hICAoKCpCU\nlIRt27ahVatWKCsrw+zZs2FnZwd9fX14e3ujqKhI7CEqzSCZnJyMzZs3w9DQkN3S0tLEDLqSjLgW\nFhbsd21tbYkG7dzcXFRVVcHW1pbdZ2Njww5lKUrtsLkJCQn46KOP0K5dO+jr62Pp0qXIy8trUN7i\n4mIAwMaNG0FE8PDwgJOTE/bt2ydWztzcnP3epk0bsXTr1q1RUlJSRz57e3v88ssvWLlyJczNzTFx\n4kRkZmYCAPbs2YOEhAQ4OjrCw8MD586dq1M+IyMDRkZGaNu2Lbuv9nWrKYe2tjYqKirYIaamhlMG\nHBwqxubNm5GQkICoqCgUFRUhPDycDeEJSFcEAPOQWbp0KQoKCtitpKQE48ePZ/MoOsPFxMQEmpqa\nSEpKYvelpKTUeZjXh6R2eTxenf1ffPEFunbtiufPn6OoqAhr1qyR+cFobm6OXbt2IT09HUFBQZgz\nZ47Ms60aui4TJ07EjRs3kJycDB6Ph0WLFgFgFMXhw4eRk5ODRYsWYcyYMSgvLxcra2lpifz8fDFF\nI891a2o4ZcDBoWKUlJSgTZs20NfXR35+PlatWiV23NzcHImJiQ3umzVrFnbu3ImoqCgQEUpLS3Hu\n3DmJb7wNIWlIR11dHePGjcPSpUtRUlKC5ORk/Pzzz5g8ebJMdZqbmyMvLw+vX79usJ2SkhLo6upC\nW1sbT548wY4dO2SW9dixY0hLSwMAGBgYgMfjQU2t/sddzbL1DWMlJCTg6tWr4PP5aNWqFVq3bg11\ndXUAwG+//YacnBwAgL6+vsT22rdvD09PTyxZsgR8Ph/37t3D3r17Zb5uTQ2nDDg4VIwFCxagvLwc\nJiYm8PT0xIgRI8TeVufPn4/jx4/DyMgICxYsAMDMRPH394ehoSGOHz8ONzc3/N///R/mzZsHIyMj\ndO7cGQcPHmzwrbe+N3ZJbN26FW3btkXHjh3h5eWFTz/9FNOnT5daDgAcHBwwceJEdOzYEUZGRsjM\nzJTYM9i0aRMOHz4MPT09fPbZZ5gwYYJYntr5a9YRExODPn36QFdXF6NGjcKWLVtgZ2cn03nWlqX6\nO5/Px5IlS2Bqaop27dohNzcX69atAwD89ddfcHJygq6uLr7++mscOXKEtcXUrCs4OBhJSUmwtLTE\nJ598gtWrV2PgwIES25V2HZUNF+mM462Hu79Uh19//RW7d+8GEWHWrFmYP38+8vPzMX78eCQnJ8PO\nzg5//PEHDAwMAAABAQGIi4vDmjVr8OGHH7aw9G83XM+Ag4OjWXjw4AF2796N6OhoxMfH4+zZs0hM\nTMT69esxZMgQJCQkYNCgQVi/fj2b38bGBrGxsWIzbjiaBk4ZcHBwNAtPnjxB79692bF2b29vnDhx\nAqdPn4a/vz8AwN/fH3/++ScAQENDA6WlpeDz+S0p9jvDG6cMXr0CaixC5ODgeENwcnLCjRs3kJ+f\nj7KyMpw/fx5paWnIzs5mp1Sam5sjOzsbAGNbEAgE8Pb2xty5c1tS9HcCjZYWQFYEAmD9emDjRqBV\nK2DyZGDDBkBLq6Ul4+DgkAUHBwcsWrQIQ4cORdu2beHi4sLOxqmmthH1559/bm4x31nemJ7BkiXA\nlSvAo0dAdDSQmAiMHQtwPUgOjjeHgIAAxMTEIDw8HIaGhnjvvfdgbm6OrKwsAEBmZibMzMxaWMp3\nkzdCGRQXA3v3AgcOANbWgJ0dcPw4oKkJ+PsD3EQRDo43g1evXgFgFludPHkSkyZNwsiRI3HgwAEA\nwIEDB+Dn59eSIr6zvBFTS7dtA8LDgX+cMbJUVAC9ewPz5gGzZjWxkBxvLNzUUtWhf//+yMvLg6am\nJn7++WcMGDAA+fn5GDduHFJSUupMLeVoPlReGYhEgKMjsGcP0K9f3eNPngBeXsD160w+Do7acMqA\ng0M6jRomCg0NhYODAzp37owNGzbUOR4WFgZ9fX24urrC1dVVpsAdtYmOBjQ0gPffl3zcwQFYtYrp\nGTSTPycODg6Otw6FlYFQKMS8efMQGhqKR48eITg4GI8fP66Tz9vbG3fu3MGdO3fw3//+V+52oqOZ\nHkFDq7I//5xRBLt2yV09BwcHBwcaMbU0KioK9vb2rL+PCRMmICQkBI61xmoa2z2Piam/V1CNmhqj\nCAYMAD7+GKjhBZaDg0OFEAgEyM7ORkZGBjIzM1FWVgaBQMBu6urq0NTUhIaGBlq3bg0LCwu0a9cO\nFhYWYnEXOJSPwsogPT1dzB+6tbU1IiMjxfLweDxERETA2dkZVlZW2LRpE7p27SpXO7GxwFdfSc/n\n5MTMLFq8GKjlupyDg6MZKSkpwZ07dxAbG4sHDx4gIyMDSUlJyMvLQ35+PkxMTKCtrY333nsPenp6\n0NTURFpaGvtiKRAI8OLFCxgZGeHVq1fIzMxEVlYW9PX10a5dO1haWsLMzAxOTk5wd3dHz549YWho\n2LIn/RagsDKQxZtez549kZqaCm1tbVy4cAF+fn5ISEiQuY3SUmY9gZOTbPmXL2eMyLdvA336yNwM\nBweHgpSXlyMmJgaxsbGIiYlBXFwckpOTYW1tDS8vL7i7u8Pa2pp9iJuamkJDQ/7HjkgkQm5uLjIz\nM5Geno7bt28jMzMTq1atwt27d6Gvr4++ffvCzc0Nbm5u8PDwgJ6eXhOc8duLwsrAysoKqampbDo1\nNbVOkAZdXV32+4gRIzBnzhzk5+fDyMioTn0rV65kv/v4+MDHxwd37wLdusm+ylhPj1ml/OWXQGQk\nM3zE8e4RFhaGsLCwlhbjrSU7Oxtnz55FSEgIwsPD0aVLF1hbW2PQoEEIDAxEt27doKmpqdQ21dTU\nYGZmBjMzMzg7O+ODDz5gjwmFQiQkJCA2NhaxsbFYsWIF7t69y4bR9PX1ZXsdHA2gaPDkqqoq6tix\nI718+ZL4fD45OzvTo0ePxPJkZWWRSCQiIqLIyEiytbWVWFd9Yvz6K9Hnn8snl1BI1KcP0b598pXj\neHtpxG3OQUQikYgePHhAa9asoT59+pCBgQENHTqUduzYQXl5eUpt69q1a0qpp7i4mE6dOkXTp08n\nY2NjcnR0pKVLl1JkZCQbnJ5DHIV7BhoaGti2bRuGDRsGoVCIGTNmwNHREUFBQQCA2bNn4/jx49ix\nYwc0NDSgra2NI0eOyNVGTAzQv798cqmpAVu2AKNGAZ98wvQWODg45KeoqAgHDx7Ejh07UFRUBC8v\nL3z//ffo378/tFTcKZiOjg78/Pzg5+cHoVCIyMhInD59GtOmTcPr168xe/ZszJo1SyyG8ruOSi86\nc3ICDh0CXF3lr3P6dMDMjHFmx/Fuwy06k4+7d+9i+/btOHLkCD744APMmTMHXl5ezRp1qymJiIjA\n9u3bce7cOQwfPhxz5sxBv3793przUxSVVQZEQNu2QHY2UMP0IDOZmUD37sCtW0DnzkoSlOONhFMG\n0uHz+Th+/Di2b9+OlJQUzJ49GzNnznyr35wLCwtx8OBB/Pjjj9DT08PcuXMxZcoUMVvnu4TKKoOC\nAsYhXVGR4vVu3AjcuAGcOdM4+TjebDhlUD9CoRC///47li9fDj09PSxduhSjR49WaMaPMggLC4OP\nj0+ztklEuHbtGv73v//h77//xuLFizFnzpx3bl2Dys63SUtjPJQ2hvnzGd9FFy4oRyYOjrcFIsKZ\nM2fQo0cPBAUF4dChQ7h37x7Gjx/fYoqgpeDxeBg4cCBOnDiB0NBQnDhxAl26dMGBAwcgFApbWrxm\nQ2V7BqGhwE8/ARcvNq7u8+eBBQuA+/eZoDgc7x5cz0Cc6rffnJwcrFixAhMnTnznx8trU32N8vLy\nsGHDBvj6+r711+it7hkAwAcfAF26MIqFg+NdJjk5GR988AE+/fRTzJo1C48ePcKkSZPe+oecIvTr\n1w83btzAihUrsHjxYvTr1w/x8fEtLVaTorLKID0dsLJSTl2//AJs3gwkJyunPg6ONwkiQlBQENzd\n3WFvb4+EhAT4+/vXCTmpCqjSYkEej4cJEybg/v37mD59OgYPHoxVq1ah6i0Nwq6yykBZPQMA6NSJ\nsR/Mn6+c+jg43hSSk5MxaNAg7NmzB2FhYdiyZYtKGEbj4uJQVlbGpn/77TcUFBSw6T///BPFxcVs\nuub35kZdXR0zZ85EbGwsLl68CA8Pj7eyl6CyyiA9XXnKAAAWLmTiJ58+rbw6OTgUISAgAObm5uje\nvTu7b9myZXB2doaLiwsGDRrEunpJSkpCmzZt2Jggc+bMYcucOXMGzs7OmCUhzF91b8DNzQ09e/ZE\nREQEunXr1vQn9w/5+fkoLS1l0zt27GDjHAOMT6OadpwPP/wQurq67Eyinj17iimtY8eOIT8/n03/\n+uuvYsqkObCxscHff/+Nr776Sq5eglAohKurK3x9fQEwrnesra3Z3/RCjRkuAQEBcHFxwblz55rs\nPOqlWdc714MkMbp3J7pzR7ntXL1K1L49UVGRcuvlUG1U5DZnuX79OsXFxZGTkxO77/Xr1+z3LVu2\n0IwZM4gok5SgAAAgAElEQVSI6OXLl2L5ajJ+/HgSCoW0bNkyevDgAbs/PT2dBg8eTL169RLb35Rk\nZGRQVlYWmz516hS9evWqydrj8/msWwmRSESrV68mgUDQZO3VJjU1lVxcXMjFxaWOG57abN68mSZN\nmkS+vr5ERLRy5UravHlznXz379+nFStWkEAgoHHjxjWJ3A3xzvQMACbewdChwHffKbdeDg558PLy\nquNyueZCp5KSEpiYmEitRyQSgc/no6ysjHUPERUVBTc3N7z33ntN2hsgIpSUlLDpxMREseN+fn4w\nNTWVu15ZbQZaWlpQ+8cTJY/Hw7Jly1gbSGFhIX755Re525YHa2trxMXFYc6cOfD29q73TT4tLQ3n\nz5/HzJkz2Z4QEUmc3aahoYHS0lLw+fwmlb1eml39SKC2GGVlRK1aEf3j406p5OcTWVoSXb+u/Lo5\nVBMVuc3FkPTG/91331H79u2pS5cuVFBQwOZr27Ytubi4kLe3N924cYPNf+nSJXJzc6OFCxcSEdGh\nQ4fI1NSU/vzzzyaX/8aNGxQREaH0epXlqE5U4+Hx4sULevr0qVLqlURERASZmJjQunXrxNolIhoz\nZgzFxcVRWFgYffTRR0TE9AxsbW2pR48eFBAQwP7WREQLFiwgd3d3Cg8PbzJ560Ml/iW1/6zPnhF1\n7Nh07f35J1GnTkQlJU3XBofq8KYog2rWrVtH06ZNIyJmOCQ/P5+IiGJjY6l9+/ZiQ0pERAKBgL75\n5huys7Oj+/fvN4m8WVlZtGPHjiapu6l5/fo1xcfHN2kbKSkp5ObmRpMmTaKysjIiIjpz5gzNmTOH\niBglV60MsrOzSSQSkUgkoqVLl1JAQECTyiYrKjlMlJamvGmlkhg1CvD0ZKKicXCoGpMmTUJ0dDQA\nZjikekipZ8+e6NSpE549e8bmLSoqwsiRIxEREYHo6Gg4yRoJSgbKy8shEokAAKamppg9e7bS6m5O\ndHV10aNHDzYdHByMJ0+eKLWN9u3b48aNGyAieHl5IT09HRERETh9+jQ6dOiAiRMn4urVq5g6dSrM\nzMzA4/HA4/Ewc+ZMREVFKVUWRVFJZdAU9oLa/PorEBLCrHTm4Ghpaj7gQ0JC4PqPq97c3FzWJcKL\nFy/w7NkzdOzYEQCQkpKCPn36oEOHDggPD5fJziAPe/bsYWfsqKmpNcvitOZYZzBx4kQ4ODiw6YqK\nCqXU26ZNG/z+++/w9PREr169MH78eKSmpuLly5c4cuQIBg4ciIMHDyIzM5Mtc+rUKbFZZS2JSjoh\naeqeAQAYGgIHDgCTJwN37wIK2Lo4OBRi4sSJCA8PR25uLtq3b49Vq1bh/PnzePr0KdTV1dGpUyfs\n2LEDAHD9+nUsX74cmpqaUFNTQ1BQEAwMDPDy5Uv0798fM2bMEIsS2BhEIhEyMzNh9c+fb968eUqp\nV5Xh8/nYvn07/vOf/yilPh6Phy1btsDLywtDhw7FuXPn4O7uDiJilenChQsRHx8PHo+HDh06sDFg\nWhqV9E00fz7jsfTrr5u+7cWLgXv3gLNnuTCZbytvm2+ihIQEDB48GIsWLcLcuXOVVu/du3dRWVkJ\nDw8PpdX5plFaWoq2bdsqpa7Tp08jICAAp0+fhqenp1LqbEpU8vFXUABICJPcJHz/PVBYCGza1Dzt\ncXA0hufPn2PgwIFYvny5UhRBWVkZBAIBAMDFxeWdVgQA0xO7d++eUuoaOXIktm7dilGjRuHWrVtK\nqbMpUUllUFQE6Os3T1uamsDRo4wju/Dw5mmTg0MRkpKS4OPjgy+++AIzZ85USp3BwcFi6wVampb2\nTTRixAjW2KyM3uTEiRNx8OBBjBo1CrGxsY2urylRSWVQWAgYGDRfe+3bAwcPAhMmAP94AeDgUCnS\n09MxaNAgLFq0CEuXLgUAvH79GuGNfIOZMWMGDJrzz/YGkZKSgr179ypU9sGDB0hKSgLAKJhdu3Zh\n2LBhuH//vhIlVC4qqQyas2dQzdChTNyDTz4BmtnlCQdHg5SVlWHkyJGYPn06vvzyS3a/np4etLW1\n5apLIBDg+++/V7aIUhGJROxwFADs3bsXyTXcCO/duxcpKSmsb6I9e/YgJSWFPR4TEyPm66g5sLW1\nRUBAgEJl+Xw+bGxs2LSfnx9Wr14NX19fvHr1SlkiKhWVNCB36ABcuQL8M4Ou2SACpk4FKiqYoSPO\noPx28CYbkIkIEydORFZWFq5du6aU6Z0ikYh15dBUFBQUQCAQsC4pfvvtN/Tr1w92dnYK1RcbG4tO\nnTqxvZgtW7Zg6tSpzdarqaysxIULFzBq1KhG1bNs2TKEhYXhypUrrAsRVUElH3fNPUxUDY8H7N4N\nZGVx/os4VIMNGzYgMTERFy5caFARPH78GFevXq33+J07d9jvTaUIas7Xj4+PR2VlJZuePHmyTIqg\nPpuBm5ub2IN/3rx50NPTA8AozA0bNrAL5JoCLS0tdn1HfTx8+FDqsN2qVaugq6uLzz//XPVeUFpi\n2XNtaoohFBKpqRFVVbWcPLm5RA4ORL/80nIycCgPFbnN5eb06dNkZWVFaWlpMuXPzs6WuL+4uJgu\nXbqkTNHqcPPmTaX401HUN1F5eTn7vbCwkBITExstS0PU9kFERPTq1SvWk2pDvH79mhwdHWnr1q1N\nIZrCqMS/pOaftaiISEenBYX5h+Rkxt31wYMtLQlHY3kTlcHDhw/JwMCAwsLCWloUieTn5zfaV5FI\nRFRaSpSTQ5SSwvgkS0oiys4mKi5W3FFlcXEx/fXXX42SrSEEAgGtWrWqUXUkJiaSubk5XblyRUlS\nNR6VsxmkpgJ9+zKrkFuax4+BQYOYsJnjxrW0NByK8qbZDIqKiuDm5oZly5bB399f7vKhoaHQ19fH\nw4cPlTYFtTZCoRBCoVCmce/iYuDOHeD+fWZLSGBczqSnAwIB0LYt0KYN0KoVUFXFTOAoK2NseFZW\ngKUlYG8PdO8OODkBPXsCxsayy3rhwgWYmZnBzc2tEWcsDv2zojg5ORnh4eGYOnWq3HVcu3YN48aN\nQ3R0tMK2FGWicsrg/n1miufDhy0s1D/cu8fMNPrlF0YujjePN00ZzJgxAxoaGo1yU1BZWYmCggKY\nm5srTa6dO3di1KhRaNeunZS2gWvXgEuXmLU7jx8zD/LqzcGBechbWQF6eoytrpqwsDB2RlFJCZCR\nwSiNhIR/lcmdO4CtLeDtzbysDR3KKJSGZapsEoOtQCBASUmJwobswMBAxMXF4fLly01u1JdKi/VJ\nalBTjBs3iDw9W1AYCdy7R9SuHdHevS0tCYciqMhtLhPnz58nMzOzOm6qFaWqmYxvlZVEp04RTZpE\nZGjI/IdXryYKDyeqMZwvFVlsBlVVRFFRRD/+SDR4MJGeHtGoUUSHDjHDTg2XraLvv/9e4pi/PFRf\n15KSEgoKClK4HoFAQL1796bt27c3Sh5loBL/kpp/1rNniUaMaEFh6uHJEyJbW6L165sm6A5H0/Gm\nKIOCggKytrZu1Hj3pk2bxBTA7t27ZTZA1yYzM1PqQyohgejbb4nMzYm8vIh27CDKyFCoOYXJz2ds\nex98wCii2bOJYmPrzy+LkbchysrKaOPGjY2qoyaPHz8mY2NjevHihdLqVASVGyb6/Xfg3Dng8OEW\nFkoC6enA8OGAlxewZQugoZI+Xzlq86YME82YMQOamprYuXOnwnWUlZXJvRBNEW7fBn78EbhxA5g2\nDZgxA+jSpcmblUpaGrB/PxAUBLz3HrBwITOMVN+s3KNHj2LAgAEwMzNrdNt5eXkwMjJSaC1IYGAg\noqOjce3atRYbLmpUq6GhoXBwcEDnzp2xYcOGevNFR0dDQ0MDJ0+elFpnS6w+lhUrK+Dvv4EXL4AP\nPgDy81taIo63hQsXLiA0NBQ//vhjo+ppSBHk5ORILR8XF4fr16/Xezw6Ghg8GJg4EfDxAV6+BDZu\nVJ4iaKxvImtr4L//Zf6j06YBgYGAmxtw8SJjkK6Nr6+vzF5KpV2/5ORk3Lx5UwGpmfUkfD6/US8C\njUbRLoVAIKBOnTrRy5cvqbKykpydnenRo0cS8w0YMIA+/PBDOn78uMS6aoqxZg3R4sWKStU8VFUR\nff01UYcORHfutLQ0HNJoxG3eLBQWFpKVlRWFhIQoVP7OnTsyTVEMCgoiPp/fYJ78/HyJ4+kJCURj\nxzLxw4OCGBtBU6CsGMjViEREx48Tvfce0aBBRNHR9efNysqqdwhJJBLRtm3bGm1raIiWHi5SuGcQ\nFRUFe3t72NnZQVNTExMmTEBISEidfFu3bsWYMWPYZenSUOWeQTUaGoyX07VrgSFDgO3bJb91cHDI\nwvr16zFkyBCMHDlSofIdOnRgZ+A0xGeffSZxRo1AIGD9/hgaGooNc5SWAosWMdO9XV2BZ8+Azz5j\nvP0qk+LiYvD5fJnOQx54PGD0aODBA2Z6+KhRQEAAkJtbN29WVhZu375dTz08zJ07V+YhoJqrr2XF\nwcEBn376Kb799lu5yyoDhZVBeno62rdvz6atra2Rnp5eJ09ISAi++OILAJDpQhYWqr4yqGbCBODm\nTcaFxahRjBsLDg55yMjIwK5duxrlPE5fX1+ucWaRSCTmnuLs2bPIknDznjvHzOtPS2MepkuWAIqa\nI/h8PoqLi9n0H3/8gYc15o9fv34daTUWFx05ckQsTvHp06clyigrmpqMEnv8mJnO2q0bsG+f+Euc\ns7NznSA0T548kdtBHhFhk4IBUtauXYuIiAiJ7q5lGZYPCwuDq6srnJyc5FesinYpjh8/TjNnzmTT\nhw4donnz5onlGTNmDN2+fZuIiPz9/RscJlqxYgWtWLGCunVbQf/97zVFxWoR+HyipUuJzMyY6W3c\nbKOW5dq1a+z9tGLFCpUeJpo1axZNnDhRobIhISEkEAgULlsfeXlE48cTde5M1BgvFjWHpEJDQ+np\n06dSy9Q3TFRQUEDFxcVset++fVRUVKSwbLGxRO7uzNBRZqZkObKysujMmTONnn0kL9u3b6chQ4aI\n7ZNlWL6goIC6du1KqampRESUk5MjV7sK/0tu3bpFw4YNY9Nr166l9evXi+Xp0KED2dnZkZ2dHeno\n6JCZmZnEm7Dmn3X4cKJz5xSVqmWJjiZydiYaMoSZisqhGqiqMnj69CmZmJhQXl6eQuXvNMJgVVxc\nTPfv36+z/+JFImtrovnzicrKFK6ebt26RZcvX5a7nKw2g4KCAqr8x3AhEonkfvAREQkERCtXMmuI\naotaUlJCL1++lLtOZVBZWUkdOnQQu34RERFiz9t169bRunXrxMr973//o2XLlincrsL/kqqqKurY\nsSO9fPmS+Hx+vQbkaqZNm0YnTpyQLESNP2ufPkQ3byoqVctTWUm0eTORiQnRf/7DvGVxtCyqqgzG\njh1La9eubZG2o6Oj6dWrV5SXl0dXr16lsjKir75iFIEivYHi4mLavXu38gWVgYqKCtq1a5fC5a9c\nYQzjy5czCuL+/fsy9WJkYdeuXVRSUqJQOVdXV9ZgfezYMakjMQsWLKC5c+eSj48Pubm50UE5Hasp\nbDPQ0NDAtm3bMGzYMHTt2hXjx4+Ho6MjgoKCGrWM/k0wIDeEpibwn/8wy+ZLS5kpd+vWMUvrOTiq\niYmJwbVr1/DVV1/JXTZVCeH43N3dYWpqCiMjI7x+bYjevRmbV3w8M3VUXlq3bo3Ro0c3Wi5FaNWq\nFWbNmsWmY2Ji5LpGAwcCsbGM/W/wYCArSwR7e3v2+IEDB8Tcc8vDuHHj0Lp1a7nLzZgxAwBw4sQJ\nALLZW6uqqhAXF4fz58/jr7/+wvfff49nz57J3qjcKqsJqClGu3ZE/wx5vRU8eUI0YQJjT/j+e2a1\nJEfzoiK3uRjDhw+n1atXy11OJBI16g08IiJCLH30KNOL3blTflvXyZMn6fHjxwrLIgllTC0tLi6m\nhIQEucsJBIwLDQsLopqLwLOzs9khKWVy4cIF6tKlC9nb29cZYici2rhxI6mpqZGzszN17tyZ7O3t\n2WOShuXXr19PK1asYNMzZsygY8eOySyPSvxLav5ZtbUZ97VvG48eEU2dSmRgQDR3LpGS/0McDaBq\nyiAhIYFMTU3FfPA3B3w+n12PwOcTffklUceO/7puiI+Pp6tXr8pcX1ljjAr1oOx1Bnw+n+Lj46Xm\ne/jwIV28ePEfGYisrJhJIcpy7XT37l2xNQqyGISvXr1K2tradPHiRZmG5R8/fkyDBg0igUBApaWl\n5OTkRA8fPpRZRpWKdFZVBfD50j0Qvok4OgIHDjDeWPX1mdWbAwYAv/3GxVx+19ixYwcCAgIUGj5o\nDFpaWhg4cCCSkxmXKikpQEwM4xIaAHr06IEePXo0WMfZs2fZiGJt2rRRuozKXmegoaEhFku5Ptq1\na4dBgwb9IwMzbBQVxQwhVc+Yz87Oxo0bNxSSo6ioCLk1FjfIsk6Lx+PBzs4O27dvl2lY3sHBAcOH\nD0ePHj3Qu3dvzJo1C127dpVdyMbpO+VQLUZODpGRUQsL00zw+UR//ME45TMwIJoyhejMGaKKipaW\n7O1DRW5zIiIqLS0lfX19hVaZKurZsqKigl69ekVEzEw9MzPG46e8w0IikYhiYmIUkuFNRCgk+uEH\nZtjowgXm/GXpZciCLAbhsLAwMjQ0JHV1dfLx8ZHrLV8RVKpn8KYbj+VBSwsYOxY4fx548gTo1Ytx\n/GVuzuw/cADIzGxpKTmUzZEjR/D++++jQ4cOcpf9+OOPFWrz+vXrKCoqxXffAbNnAydOMD57GrJJ\nnj59GnFxcWL7eDyeUgPESKKxvokagoiwevVqtmeTnp6O3bt315tfTQ1YuhQ4cgSYORP47jseunat\nv+ckj6+28ePHIykpqUF5e/bsibS0NHzxxRcwNzeHn59fwyfYWJpU1chItRgxMUSuri0sTAuTnc3E\nTRg9mukxODkxU/6OHZO8OIZDOipym5NIJKKePXvS+fPnm7XdzEwiHx/G9389YZIlIhAISCQS0cqV\nK5vUJ09NlG0zqE3N8xCJRDIvKMvOJho6lKhfP2aCS20Dtay+2n766Sfy8fEhT09PcnFxYfdLMghX\n8/DhQzI2NiZbW1uF16TIgsr1DPT0WlqKlsXMDJg+HTh+HMjJAfbsYcL+7d/P2B3s7BgfKxs3MpGk\nXr1qaYk5ZCU6Ohp5eXkYNmyYXOXy8/MhFAoVajMsjPHa6e0NhIYy95esqKurg8fjYfHixQq5ZVYE\nZdsMasPj8VBVVQUiwuvXr2V242FmBly4wHgrdncHgoIixY7L6qutoqICY8aMgb29PTIzM5GUlITK\nykocPXq0jm+q7OxsEBG6du2KDh06oLS0FEZGRoqfvBRUShmUlyvu++RtREMD8PBgHIWdPQvk5TF/\n6JEjmXCAa9YwIQTNzBij1+efA5s3A6dPM+scuLUNqkVQUBB8fX3l9ld/9OhRueMxiETA6NF7MW7c\nK+zbB6xcCairy16++oEJMPPsXzXBW0f1cA0AREREiPkiSk5OFvNlpCwqKyvxyy+/QCgUYv/+/XKV\nVVNj/DMdOwYcPToZ33zDTHgBZPfVdvHiRcyZMwdqamqYOXNmgwbh48ePo3v37nBxccHr169ha2vb\nqHOXhkoFtzl+HAgOZsY0OWSDiLEtPH7MbM+fM54lX74EkpKYQOPt2/8bWLxdO8YuYWYGmJoygcWN\njQFDQybv24gqBLcRiURo164dbt26hY4dOzZpW7m5gL8/kJdXjuPH28DaWv46tmzZAn9/f+gr0Ygn\nFAqh/o9GOnfuHMzMzNCrVy8ATKwAbW1tREdHw8fHB3fu3IGuri67+OvSpUtwdXWFiYmJ0uRpDHl5\nTECflBTmmfXgwQmEhobi//7v/wAAv/32GyIjI7F161a2zNixYxEYGAg3NzdMmTIFY8aMkXmhXllZ\nGczNzZGSkgJDQ8MmOSeVitVVXv72PpCaCh6PechbWjLBwWtCxDwY0tKA1FRGaWRmMh4oc3KYIaa8\nPCZIT0EBk9/AgBmq09MDdHWZab5t2zI9Nm1t5vdp3ZrZWrX6d9PUZHoympr/ftfQYN5Gqzc1tX8/\nebx/P6u3munqc6v5Wfv7m0RUVBRMTU2bXBGcPw/MmgV8+imwZk0bhV1N17cyOjMzE+3atZO7vtu3\nb6OoqIgdIvvwww/Fjtd2ce/q6iqWdnJygkaN0IICgUAsLY3MzExYWFhIHO4qLy9H69atJR4LDQ3F\nggULIBQKMXPmTCxatAgA8wJ16hTg6Tkd3brFwdi4HBUV2Zg4cSIGDhyI1NRUWNfSwrGxsZgwYQKI\nCFlZWbh69So0NTVlcl2ura2N7t2748KFC5g0aZLM5y0PKtUz2LWLmdvbgIGfowmpqGCUQnEx8Po1\nM8xUUsK41SgrY7bycmbj8//dKiuZraoKEAj+/RQIAKHw300k+veT6N/P6q06DdT9rP1dHuLjW75n\nsGTJEvD5fPz0008ylxEKhbh16xb69esnNW9pKfDtt4zb6S1bcuHhUaXQQ1sau3fvxrRp06Q+iIVC\nIS5duoThw4crXQYiwtq1a7FkyRKZh9x27dqFmTNnSsz/999/A0Cd6ywUCtGlSxdcvnwZVlZW6NWr\nF4KDg+Ho6MjmycrKQm6uBSZMEODFiw4wMlLDixfP4OHhUSdvTaZPnw5fX1988sknsp42du/ejcuX\nL+PIkSMyl5GLJjNNy0G1GL/+SlRrqi0HR6NRhdvc0dGR/v77b7nK5ObmyuSZ9PZtJpLXlClEBQXM\nylVFvHgWFxfTzz//LHc5SVRVVTXbmoSmcBVBJJun0GrKyoj6999MQGsyN+9Ea9YwDgh37txJO3fu\nrJO/Iced9ZGZmUkGBgZSo9UpisoZkLlhIo63jRcvXiAvLw99+/aVq5yxsTFcXFzqPV5ayjhFHDUK\n+OEH4OBBZphvwIABCo2t6+joYM6cOTLlFQgEiI6OFtsnEonYufMaGhoKrUlQZJ3BzZs32bf7mjx6\n9AhFRUVy11eNLEZhgDHw9+jRGfHxq7FnTzhMTJ7j1q0lSEsDZs+ejdmzZ9cps2/fPlhaWsolj4WF\nBdq3b6/wKmhpcMqAg6OJOXPmDD766CO5ZxE1xMWLTBSynBzGBjR2rHLqlRQWUxIaGhpi7hUA4O7d\nu3j9+rVyBJEDHx8fiUNpqamp0NXVlbmenJwc/P7772xa1um0H374IVatWoUzZ85gw4YpiItjpp+6\nugJBQczwpyQKCwvFZlTJwuDBgyVOWVUKTdLfkJNqMRYuJGoh9+4cbzEtfZsPGDCAgoOD5Spz+/Zt\nevbsWZ39ublE/v5EtraMi4SaiEQiOnTokNzyVVVVNflir+YiNja2wVgE0jyF7ty5k3r06EHdu3en\n7t27k6enJ3usoYVh1XTs2JFyc3OJiOjBA6LevYm8vYkUcKIqkfj4eOrUqZNyKquFSvUMKiq4ngHH\n2wURITY2FgMHDpSrnKmpqdi8ciLg6FGmN6Cvz/QGattmhUJhnRi+spCfnw8LCwu5ywHAq1evEBwc\njKtXrypUXtmoqanV68NfKBRi3rx5CA0NxaNHjxAcHIzHjx+L5enRoweuX7+Oe/fuYd26dYiNjW1w\nYVhiYiI7OaHafYexsTEAJs7yzZuAnx/Qty/jbkYgaNz5OTk5IScnB3l5eY2rSAIqpQy4YSKOt43E\nxETo6+vDTJ6lvwA6duwIzX/mhaanMw+U1auBkyeBX38FdHTqltHQ0FBo6qqZmRkcHBzkLleNr6+v\nwsqkNo31TdS6dWuMGDFC4jFZVgn37dsXVVVVKCoqgqenJ3R0dBpcGHbixAl0794drq6u8Pf3rzPT\nR10dWLCAmSX5119Anz5MAKFqzp8/j6qqKpnPT01NDZ06dUJsbKzMZWSuW+k1NgJOGXC8bcTGxirs\n3E0kAnbtAlxcmPHnuDjmDVOVMDMzg46OjnyukpsQBwcH1jZz7NgxsQetrAbhqqoqREZGYs+ePfjk\nk0/w9OlTPH/+HEuWLAEgbhReuHAhHjx4gDt37mDr1q3sIrradOzIuI+ZMwcYMgRYsYKZjm1vbw9+\n9TJmGenVqxdiYmLkKiMLKqcMmtnFOwdHk1L9NioPZ86cwfXryRg0iPFNde0a406iVav6y9y6dQvX\nrl2TW77169fLXQYALl68CIGEMY/Y2FiEh4crVCegmG+iJ0+e4Pz583X29+7dW0wZyGoQbteuHTQ1\nNbF3794GvY/WRprsPB4QEADcvcvEkejdG6ioeA86krp5DeDt7V3Ho6wyUCllwNkMON42YmNj4eXl\nJVeZtDRPfPJJe/j6AhERjJ1AGu7u7nK3AwDz58+XuwwA6OrqSlx45ubm1uB0WGUTGhqKkSNHYv78\n+XUe3DY2NkhJSUHfvn3RunVrhIeHi8VGlrRKGADu3buHWbNm4fTp003i+sHSkvE19tVXjNeAdevq\nn3EkCXd39yYZJlKp2UQDBxJdutTCwnC8dbTUbS4SiUhfX5+yZfQbXV7OzBTq0oXo7t2mlU0VqOlO\n+tKlS3T9+nV2VtODBw+kXjdZ3Ea/evWKTp06Rd999x1t2LBBaujI5ORk6tSpE926dYvOnTsn9zkd\nPXpULnffyclEnTsfIl9fERUVyVZGKBRS27Zt2VlLykKlegaczYDjbSIxMRF6enoyGY+Lipi3xPJy\nJuSis7Ps7QiFQrldXBMRCgsL5SoDQK7x7ZMnT+L+/fsSj0VGRuLChQtsevDgwWI9Gx0dHZSWltZb\n96tXr7B48WKpBmFTU1OYmJigpKQE6urqUkNHrl69GgUFBfjiiy+wYMECeHh4yHy+AODi4iJx+Kw+\nbGyA06c9YWEhQp8+jA8xaaipqaFHjx7K7x0oVbUoSLUYLi5MgBsODmXSUrd5aGgoucoQramigsjT\nk2juXKInTxLo5MmTcrUTHh5OYWFhcpVJTEykkJAQucoQEa1fv54EAoHM+Wu+JZeVlcndXjVr166l\nqnPvmA4AACAASURBVBrR6UUiEf3xxx9SQ0dWs3LlStq0aZPC7TcHmzYR2dsza0mk8dlnnykcBrU+\nVMprKWcz4HibyMzMROfOnaXm++EHwMQE2LIFEIk6wM7ORq52+vfvL7dsHTt2VGgaarXXTlmpNtpW\nVFRg586dmDNnDlo1ZAmvh2+//RYaGhqoqKhgPYwqc0W3KvDNN0zP4MsvgcOHG85raWmJTCXHxVWp\nq8kNE3G8TWRkZEiNdSwUMi4Lfv6ZceGtoaGh0MNS1dm/fz/8/f2lnlt96ww0NDQgEAiwdetW1uWF\nlZWVTAbhauJrTvCXkYMHD8pdZu/evXKXqY7FvHYt43lW2poybW1tsXNXBpwy4OBoIjIzM6U6IxMK\nGTfhjVmzJa8zNiLCy5cv5W7nwYMHcpepXsD1+eefNzpko4aGBgIDA9kAMu7u7nj27FmDK4SrISK5\nF/4BwPvvvy+3+/NBtQOLyEB1nAdtbSaOiDQXT507d0Z2drbc7TSEyikDbp0Bx9tCcnKy1Aeglhaz\nCOmbbxiXE2vXrpW7nd1yBgApLCyU+y25rKwMycnJcpUBgGvXriEjI0NsX0pKSr35Jc3VT01NZR26\n8Xg8fPPNNwAY5SDNIJyVlYX27dvj559/xp49e2BjY4MSOeLBdurUSe74z4qEp6xeDPfjj4znWTs7\n6fmVPUykUsFttLSYwCpvYS+ZowVpqbCXffr0wY8//ih1/v/r18DQoUxEucWL+Rg8uNUbG9FNFvbt\n24epU6eyITBlye/v7//W2QhqcvcuM0QUGwtcv86EqW2IjIwM9OzZE1lZWUqTQWWurlDIOHGS0YMu\nB4fKk5WVBStp/2owIUavX2dCVc6d2wr9+jH+h+7fl28x0pvC9OnT61UEkmwG06dPl6gIarqblpU9\ne/bIXWbXrl1y5X/69KlUH0tETLzyXbuADz4ABgz4Ha6upYiPl64IAMYNSG5urlzTWKXRKGUQGhoK\nBwcHdO7cWeKy7ZCQEDg7O8PV1RVubm4Nejasthe8zW9EHG8GAQEBMDc3R/fu3dl9UVFR8PDwgKur\nK3r16iUW2GXdunXo3LkzHBwccPHiRXZ/VlYWRo4ciVmzZkltU0uLcVXw+DEQGAg8fAh8/DFjSxg/\nnjEyx8Yy6xFqUlpaKrdvm4SEBLnyA0wMY3mpuY5AEpWVlfXW+/DhQ6meOeVdAwAAQ4cOlbtM7XjN\n0rC1tRW7dwAmENG9e0wAomnTAFtbwNsbuHEDmDgRiI8fgsBALYkOCCWhoaEBQ0NDsZgSkp7HL168\ngIeHBwYNGiR9XYmic1JlWf1XUlLCfr937169frgB0KtXREZGikrDwVE/8t7m169fp7i4OHJycmL3\neXt7U2hoKBERnT9/nnx8fIiI6OHDh+Ts7EyVlZX08uVL6tSpEzu3nsfjUUVFBS1btowePHggtV2R\nSEQ//PCD2L6kJKJ9+5iQli4uRDo6RMbGjJ/8Tz8l+vTTv2jduod08yZRdjaRLItff//9dxmvxL+c\nP39ervwikYhu374tNd+lelwOXLlyhYRCoVxttjT5+URRUUTBwUTff8+sJu/Xj8jCgqhNG6Ju3YjG\njiXavp3oyRPZfquGsLa2ppSUFCKq/3kcGBhISUlJdOXKFdq2bVuD9Sm8zqCmO1gA7Oq/mgGg27Zt\ny34vKSlpMBQft8aAQ1Xw8vJiwzdW065dO3bWTmFhITv8ExISgokTJ0JTUxN2dnawt7dHZGQkevfu\nDSKCQCBAWVmZzBHEFi5cKJa2tWXeJKdNY9JEwKtXQGIiM8zw/PlQ3LsHnDrFpPl8wNgYMDSsuxkY\nVH+fhAsX6h7/x2O2ROpzC10fPB4PvXv3lppv8ODBEvfLG/9BWQgEQGEhUFDAbDW/N7Tl5zO/jb09\ns3XqBHh5AdOnM98tLZmpw8qkerotUP/zWENDAyUlJSgpKWFdotdbn6KCSHIHGxkZWSffn3/+iSVL\nliAzM1OsC10bblophyqzfv169OvXD4GBgRCJRLh16xYAxpDXp08fNl+1W2ShUAg1NTV4e3tj0KBB\nMi0+4/F4Uv+wPB5gbs5skuLYvH7NPJjqe2ilp0veX1jIzOQzNAQ8PIATJ+S7Po0lIyMDGzacR2Ul\n4OMzEwIBUFXFPJxrfq/5WV5ejvv3/4Cjo7/UvNWf2dmh0NJyhIaGLbuvqoqZuFJQAJSVMTacmkoy\nPz8I7u6zYWjIKFp7+9rKFTAyYtLVw9xBQUGYMaNu7OP6uHnzJvT09OoMLzVEVVUV65W1vufxokWL\nMHnyZBgYGOCwlJVsCisDWadb+fn5wc/PDzdu3MCUKVPw9OlTifl++mklXr9mXPX6+Pgo5MqWgwNg\njJCNDZJSmxkzZmDLli34+OOPcezYMQQEBODSpUsS81bPXuLxeNi0aRN7L1fLpMx0aWkphg4dCk1N\nTbHjdnbMcWNjYPRo8fLt2rVDly5dxPITARcuhKG4GHBzE8/fv39/REVFoaKiQmb5YmJi8PLlS5ia\nmsp8Pr//vg9Emnj82B5WVj7Q0ABycsKgoQHY2PhAUxPIyGDSnTr5QFu7NfT126KkJAwODkz+Fy/C\noK4OdO/OpBMSmLSrK5OOjq5Eq1ZP8P77ttDUBO7eZY4PHOgDQ0MgLi4MamriMubmGmPMGNR7DiUl\njDw1j/v6+sr1m7q6ukJdXV2ue6BNmzZiU24lYW1tLft/4f/bu/O4qMr9D+CfYVFQCRVcgJEQUBGQ\nAUHREAOXMCtaNJeW22JW2O2+vC030xbrZmTLzUot64aZmlKa4kouiZKgoiimoIICsSvIIrLOzPf3\nBz/OZZTlnDMzzIjf9z96Zs7znGfODPOd8zzn+T5y+6uSk5MpIiJC2Ja6PmhLACg5mWjUKLmtYaxt\ncj7m2dnZOmMGdnZ2wv+1Wi3dcccdREQUHR1N0dHRwnMRERF05MgR0mg0BEBSBstr167Rf/7zH0nt\n3Lx5M+Xm5koqI3XMQKvVCuMlYl26dInKysokHUOj0dD+/fslHcccabVaunr1qqQy6enpdPnyZUll\nnJycKCsri4jkfR/fSHYwaGxs7DAdbFZWlvDHcOLECXJ3d2+9EQAdOEA0frzc1jDWNkMEg4CAACEZ\n3L59+ygoKIiI/jeAXF9fT5cuXSJ3d3fhM29hYSE5qVvLZGy3g/r6ekmPt1RaWio5+V1iYiLV1dVJ\nKvPNN99I2r+2tpa+/vprSWVOnTolORgolUrKyckhInHfxx3RK53jrl27aOjQoeTh4UEffvghETWd\nuOaTt3TpUvLx8SF/f38aN24cHTt2rPVGALRrF1GLwMaYwUgNBrNmzSInJyeytrYmpVJJMTExlJKS\nQqNHjyaVSkVjxoyh1NRUYf8lS5aQh4cHDRs2TOcXdLdu3ai2ttZgr6Orqa+vp6VLl7b63DfffNPh\nl2NsbCyVl5dLOmZCQoKkqzUiooKCAkn7dxYnJyfKz88Xtlv7PpbCbGYgb95MWLu26a4IxgzJVDOQ\n+/fvj9OnTxtssfjWNDQ0oK6uDnfccYfoMpcuXYKLi4ukhHiJiYmSV1L76aef8Oijj3Y4KN5SQkIC\njxeKQETo2bMnSkpKYGdnZ5A6zWYGMt9NxLoaBwcHyflj3n//fUn7l5WVIT4+XlKZ7OxsycntGhoa\nJAfUsLCwVhfdKSwslFRXa4vWm7Nr165Jngh46NAhSftXVVVBoVAYLBAAZhQM6uo4SR3rWlxdXW9K\n0taRhQsXStrfyckJM2bMkFRm4sSJkjN4Tpw4UXLCNmdnZ9i08ke9c+fONoNBa1cFu3fv1km7QET4\n7bffJLUFaLoikpp59c8//5R8Z9qBAwck5wxqvkVUrMLCQlGpTqQwm8Vt+MqAdTUuLi6SrwxaW2T+\nVpeXl6dzD7yY9BwtPffcczrbtbW1srreFAoFnJycJJVxd3eHh4eHpDJtpdFuj9S012LSo0tlNlcG\nHAxYV+Ps7Cz5yoCabuqQVEZO5srU1FTJZbZu3Sp5reXmYyUmJopac7m9X+FqtRrHjh1Djx49oJKy\nSPT/Gzx4MBwcHCSV6dmzJ3r06CH5WMZWWFjIwYCxW4WTk5NOQjsxvv/+e8kBZMuWLZIDSHtrCrTF\nx8dHcl84ADz44IOora2VNMjdmoMHD94S4wdS3z+1Wo2DBw9KKpOamooBAwZIKtMRswkGPGbAuhpn\nZ2dhhqhYc+bMkdwXHBUVJbk//6GHHpK0P9C0upbcX8n33HMPLCwssHnzZly7dq3N/dq7k6h37954\n+OGHZR1/+fLlktM9X7lyRVhVTSy1Wo1du3ZJKlNbWyt5ILihoaHdJT7lMJtgwFcGrKtpzlMkhdQv\ndVMQexVy5swZ/PnnnzqPjR8/XvRxrl27ptNtFBgYKPy/pKSk3ZT4N3r88cclj8c4OjriqaeeklTG\nysrqpjGOjtjZ2WHkyJGSyhQVFXEwYOxW4ePjgwsXLkjuWmnOASRFVlaW5DK//fab5O4lIsIHH3wg\nal9ra2v4+PjoPNavXz/hV3B1dTU++eQT4bnKykosWrRI2K6vr29zCckBAwZI6jPv06eP6H2bKRQK\n0dlmO1tqair8/f0NWicHA8aMpEePHnB1dcXp06cllfv8888lH6s5i6oUjo6OaGhokFRGoVCIvv11\n2LBh7S5V2atXL7z++uvCdo8ePXTSXjs6OmLw4MFtlvfy8uqwDdnZ2bKCq5xFgwAgIyNDcpmdO3dK\n2r+srAxXrlwRlQlXCrMJBjxmwLqiMWPG4MSJE5LKvPnmm5KP8+STT0ouExgYKGkWcrP21i4+d+4c\nduzYIblOoOlKQs5tmSkpKW0OwKakpEiaAd1s27ZtKC8vl1RGq9VKDvxA09WSFKmpqQgMDDT4mtBm\nc1MzXxmwrigoKEhyMLhVrFu3Do899pjOl5JSqcTQoUM7tR2jRo1CVVVVq89JnZDXbPbs2ZLLWFhY\nYObMmZLLSV2+88SJEwgKCpJ8nI6YzZUBBwPWFckNBpcvX5Zc5vDhw5LL1NbWYvny5ZLLAUBISIhw\nt1Tz2EOvXr30+sUqdx2K5ttWm9vR3h1Lt7rjx4/rDKYbCgcDxoxIpVIhPT1dcv/zL7/8IvlYarVa\n8nFsbW3xdPOamhINHjwYVlZWuHLlClauXCmrDkPbvHkzDh8+jJ9//llWeY1GgwMHDkguV1lZKXlO\nCdB0dSVVYmKiUYKB2XQT8ZgB64psbW0xdOhQpKWlSeoOeOmllyQf6+6775ZcBmj6Na+PHj166F1H\nM30zlk6fPh1EhJCQEFnlKyoqJPfhA0B5ebmsSWBi1oluqbS0FLW1tQYfPAb4yoAxo5s0aZLkzKKd\nraKiQvKciNraWgBNKRvuueceYzRLNCLCH3/8AeB/czWa2yeFg4MDfH19JZdzc3ODq6ur5HJSv9Tj\n4+MxYcIEgw8eAxwMGDO6yMhIxMXFSS6XlpYmuUxZWRm2bt0quVz37t1x/Phx0fur1WqdsYaWCeDE\n5CBqi9wxg+vXr9/0BblmzRpJbZFzK2ln27Jli6w7rsTgYMCYkYWEhCArK0vyL+/8/HzJ98g7ODgg\nICBAUhmgqTvrwQcfFL2/lZWVzhyBZhqNBj/++GOnLSZUU1MDoKmr66677tJ57sUXX0Tv3r1F1ZOV\nlSUriALy5oXU1tbiq6++klSmoaEBv/32G+677z7JxxPDbFY6692bcPEi0LevqVvDuhpTrXTW0uOP\nP47x48fjhRdeMGk7xFCr1W2mbvjrr7+gVCpFd1NcvXoVffr0MUqajT/++AMKhULU+EBubm6bs5n1\nVVFRITroNCMi1NbWSsr1tHfvXrzzzjuyJhiKYTZXBvX1gIz5L4zdEiIjI7Ft27ZOO961a9dkBUAi\nwkcffdTm81LvtLlw4QKOHj0quR2taWho0JnQNm7cONEDxQkJCZKTBoolNRAATT9QpCb927Ztm9G6\niABIXCncSACQlRVRfb2pW8K6InP4mFdUVFCvXr2ourpaUrnLly/TgQMHJB8vMTGRkpOTJZcztpUr\nV1JxcXGbz9/4Wk+ePElqtZqIiBoaGujPP/80aHtWrFhBZWVlssr+9ddf1NjYKLnc1atXqaGhQVIZ\nrVZLSqWSzpw5I/l4YpnNlYFaDciYNc7YLcHe3h6BgYHYvn27pHKOjo5wdHSUfLxx48ZhzJgxksu1\n1PxL+uzZsygtLdWrrmZRUVE6t2B+9tlnOrOHY2NjdSaMFRUVCQvqWFtby7rTp6WGhgYcOXJE2J4z\nZw76yuybPnDggKy7ejZv3iw5nfbp06dhYWEBb29vyccTy2zGDCwtCRLPD2OimMOYAQCsXr0amzZt\nkpyYzFSOHz+O4uJi9OrVC+PHjzfK7Yym8PvvvyM8PPyWSBfe7OWXX4a9vb3ojLFymE0wsLEhyLgt\nmLEOmUswqKmpgaurK44dOwZ3d3dJZbVarawv4+TkZNjb28v+RUlEt9SXphiHDh2CWq3GhAkTTN0U\nUaqrq+Hq6oq0tDSdtaQNzWxCPXcRsa6uR48eeOqpp/Dvf/9bctkff/xR1lKVo0aNgr29veRyZ86c\nQWpqqhAIiouLjTYA25LceQZShIaGYsKECSgoKJC0QE6z6OhoWT8uysvLZd0J9OWXX2L8+PFGDQSA\nGV0Z9O1LKCszdUtYV2QuVwZA0/3sY8aMQX5+Pmwk5F/p7F/o2dnZuPPOO4WrkTNnzqCyslJ2mgex\nEhIS9E5J0Rq1Wo3i4uKbVge7ePEiPDw8JNVVV1cn6b1rlpOTAxsbGwwcOFB0GSKCt7c3vvrqK0ya\nNEnyMaUwm2DQvz+hpMTULWFdkTkFAwCYMmUKHn/8cVlrEMhVW1uLjIwMycsrdhV//PEH+vfv3+np\ntfV1+PBhPPvss8jIyDD6mA13EzHWyebNmyc7y+fBgwdlBTYbGxtcuXKl3X0uXLiALVu2dFhXRkYG\nNm3aJLkNnY2IhHM1bty4dgNBUlISEhMT23y+uroav/76q+y2NDY2yiq3cuVKREVFdcrgvdlcGbi5\nEbKzTd0S1hWZ25WBRqOBq6sr1q5dK3kQ88SJE/D09JQ1DtCRuro6dOvWTdQXT2Njo6wVxDpiyG6i\nlStXYvr06ejfv7+o/WtqatqcCFZZWYn6+nrRdbV06dIlJCcn4/HHH5dULi8vDz4+PsjNzZW1hrNU\neoWb+Ph4eHl5YciQIVi6dOlNz69fvx4qlQp+fn4ICQlpd0k4vjJgtwtLS0ssWrSo3Zm+bQkMDNQ7\nEJw9e1ZnMLg5UNrY2Ij+BdoyEHz66aeS11I2lpZBf968eZK+vJsDQWs/HOzt7WUFAgBwd3eXHAgA\nYMmSJXj++ec7JRAAkD81U61Wk4eHB2VnZ1NDQwOpVCpKT0/X2ScpKYkqKiqIiGj37t0UHBzcal0A\nyNtbbksYa58eH3OjaWhoIA8PD9q3b5+s8nV1dbKP/eeffwp/q2VlZbRs2TLZdRER1dbWCv/XarV6\n1aWPnJwciomJ0buen376iTIyMoiIaOPGjcIM6M50/vx5cnBwkD07Wg7ZfyVJSUkUEREhbEdHR1N0\ndHSb+1+9epVcXFxabwRAKpXcljDWPnMMBkREGzZsIJVKJesLNDY2ljIzMw3SDkN+gZ87d47WrVtn\nsPrao9VqKS4uTlZKCDF1EzW9HrnOnz8vOyXI/fffTx988IHsY8shu5uooKBA575XpVLZbore77//\nHlOnTm3zee4mYrebGTNmQKvVyhqMnTFjBjw9PWUf+/r16wCAffv2ya6jNcOGDdPpEtm7d69O+oeO\ndDTPoKSkRGi7QqHAnXfeCUtLS1ltbU/zbbwuLi6y6+jevbus5SlPnDiBlJQUzJ8/X/ax5ZC97KWU\ne54PHDiAmJiYdhfsLi5ejMWLm/4fFhZmlHuN2e0hISGhUyYv6cvCwgKffvopXn75ZTz88MNtpo02\nNK1Wi2+++Qavvvoq+vbti5qaGvTs2dMox5o8ebLOnTSbNm3CsGHDMGLECABNk9ns7e1h+/+LmajV\nap0U2vv27YO7u7swY/vIkSMIDQ0V2qtSqQze5piYGERGRsLR0RFr167FE088ATs7O8n1yE2ZvWDB\nAixevNho70mb5F5SJCcn63QTffjhh/TRRx/dtF9aWhp5eHi0e0kLgEJD5baEsfbp8TE3Oq1WS+Hh\n4fTtt9/KKl9QUEBr1641cKs6T0JCAl26dEnY3rRpE124cEHYLioqovpOTmcsNbPsjVJSUmS3ee/e\nveTp6Sk5q6khyP4raWxsJHd3d8rOzqb6+vpWB5Bzc3PJw8Ojw34zADRhgtyWMNY+cw4GRE1fHn37\n9qWSkhJZ5cV+eV26dKnd/vXPP/+cqqqqZLXhVldRUdHuQLFWq9UJUu3ZvXu3rDbU1taSUqmkX375\nRVZ5fckeM7CyssLy5csREREBb29vzJw5E8OHD8eqVauwatUqAMD777+P8vJyREVFISAgAKNHj26z\nPh4zYLeroKAgPP3003j55ZdllRfbnZCUlNTuraMvvfQSevXqJasNhmKq7r1ffvlFWEKzNQqFAkeP\nHhU1X2XKlCmy2vDee+8hKCgI06ZNk1VebyYJQTcAQPffb+pWsK7KTD7m7aqpqaGhQ4fq9atw9erV\ndP36dYO059ixY3rdviqXnIV8zIFarRZuR5Xj2LFj1L9//3YX/jE2TkfBmBmwtbXF6tWrMW/ePFy+\nfFlWHQ888MBNs4LPnDmDoqIiyXX1798fubm5stqhj866caSxsRFLliyRVba2thZ//PGHzmPp6emy\ns7rW1dVh1qxZWLZsmc7CP53NbNJRzJhBiI01dUtYV2Ru6Sja88orryA3NxebN282SH2HDx/G2LFj\n9cptU11djYaGBtkrgpkr0iMTbGJiIkJDQw3SjgULFiAjIwNbt2416doRfGXAmBlZsmQJzpw5o1ci\nOLVajWXLlgEAQkJC9E5yptFosH//fr3qEMuYYwaHDh3SqV+fL97mQCBnfYKWUlJS8MMPP+Dbb781\n+SJCHAwYMyPN3UUvvfQSMjMzZdVx7tw5+Pn5GaxN9vb2ePTRR4Xto0ePtjvYak5aXhGGhIQYtBuq\nrq4OOTk5sgNleXk5HnvsMZN3DzUzm2DQSfNtGDN7d911FxYsWICpU6eiurpacvnevXvrfOkZuous\nT58+KC8vN2idzQz5ZV1fX4/o6Ghh29AzlW1sbDB79mwMGTJEclmNRoPIyEhERERg1qxZBm2XXGYT\nDPjKgLH/mT9/PkJDQ/HUU09JHphUKpVC11BlZSU+//xzg7Zt6NChQpoGjUaD999/32zGZH7//XcU\nFxcDaEoHsXDhQoPWr9FohFvnm7m6ukqu54033kD37t2F7jxzwMGAMTOkUCjw9ddfo6ioCIub87S0\nIysrCz///PNNj9vb2+OVV14xQgubWFpa4p133hH6u/Pz87Ft2zbZ9UkdM6iqqtJZtEepVMpONS2G\nhYUFHnrooVafO3jwIJKSkjqsIyYmBlu3bkVsbGynpSARw2xawsGAMV3du3fHr7/+ioCAAPj5+WH6\n9Olt7uvq6irk72lLXV0d0tPTjbr0pYuLi87trc23tk6ePNkg9RcXF6O6ulpI0peamgo3Nzf069cP\nAIy2rGV9fT26d+8OhULRZv/+3Xffjbq6unbrOXLkCF577TUkJibCwcHBGE2Vja8MGDNjAwcOxI4d\nOxAVFYW0tLSbnm/uQhKzQln37t07XPpSXzd+Wfr4+GDUqFHCdkpKCnbs2CFsp6Wl6fyaHjhwII4f\nPy5sJycnIz4+XtiuqKjQCTZhYWFwc3Mz9MvQUVNTI3qZUhsbGwBotWuvoKAA06dPx5o1a+Dj42PQ\nNhqEyaa7tQCA3n7b1K1gXZWZfMz1snHjRnJxcaGzZ88Kj1VWVtJnn30mu05TLNpyo5qaGiovLxe2\ny8vLZedoMic//vgjXbx4Udi+fPkyeXt709KlS03YqvbxlQFjt4CZM2fi7bffRnh4OHJycgAAd9xx\nh17jAZ988gnq6+sN1EJ5bG1t0bt3b2H71KlTRu3zFysrK0uvuR5PPvmk0G1XXl6OkJAQREZG4vXX\nXzdUEw2OxwwYu0W88MILaGhowMSJE5GQkKCzuJQcCxYsMFDLuh6lUtnhGIwYlZWViIiIwP33348P\nP/zQ5BPL2sNXBozdQl5++WXMmzcPoaGhOH/+vMHq3bt37035dkzBlItaxcXFobCwEEBT37++M7fL\nysoQFhaG0aNH47PPPjPrQACYUTAwozusGDOqvLw8hIeHw8fHB76+vvjyyy8BAK+//jqGDx8OlUqF\nRx55BJWVlQCAnJwc2NraIiAgAAEBAbh48SJee+01hIeHY9WqVVCpVJg7d65ebZo8eTJCQkL0fm23\nslGjRsHZ2Vl2+bq6OgQHB8Pf3x9Dhw7FsGHDMGHCBIwfPx6+vr6wtLREamqqsP+N7+u8efOE57Zv\n326Q91USUw9aEDUN8K1YYepWsK7KTD7mgqKiIjp58iQREV27do2GDh1K6enptGfPHtJoNERE9MYb\nb9Abb7xBRETZ2dnk6+t7Uz3fffcd2draUnJyMr399tt05swZg7RPrVbTe++9JywK35k6M4V1YWEh\nrVmzxqB1Xr9+nTIzM8nLy4tcXFzo0KFDlJGRQefPn6ewsDA6ceKEsG9b7ysR0cyZM0mj0Rj0fe2I\n2VwZcDcRu10MHDgQ/v7+AIBevXph+PDhKCwsxOTJk4WuieDgYOTn57dbz3PPPYeRI0fivvvuQ2Ji\nIrp162aQ9t04kayqqgoajcYgdZsatZgp7eDggNmzZxu0/vj4eIwZMwZRUVFwcnKCg4MDvLy8JM9/\n0Gq1qK+vR01NjcHe145wMGDMhHJycnDy5EkEBwfrPB4TE4OpU6cK29nZ2QgICEBYWJhO3/7ixYsx\ncOBAnDx5Et99951RvrQLCgqwZ88eg9fbGmOPGXz88cdCkr1u3brdtP6DXESEL7/8EvPmzUPvk97s\nyAAAEAtJREFU3r2xaNEihIeHw9vbu91ybb2vzz//PEJDQ2FpaSkr95EsnXL90QEAtG6dqVvBuioz\n+Zjf5Nq1axQYGEhbtmzRefyDDz6gRx55RNiur6+nq1evEhHRiRMnaNCgQTetVVxaWkrh4eF07733\nUkVFhVHbvWbNGsrJyTHqMQwlJSWFTp8+bdRj1NXV0bPPPkt+fn6UnZ1NRE1rKgcHB+t0e93YTSTm\nfe1MfGXAmAk0NjZi2rRpeOKJJ3Ry3fzwww/YtWsX1q9fLzzWrVs39OnTBwAwcuRIeHh43JTe2sHB\nAb/99hsGDx4MPz8/XLhwwWhtf/LJJ3UGWvfs2YPGxkaD1K3vega1tbXIy8sTtgcMGIDhw4fr2aq2\nlZSUYMyYMSgtLcXhw4eF2dD29va47777dGZT30jM+9qZOBgw1smICHPmzIG3tzfmz58vPB4fH49P\nPvkEcXFxQloDACgtLRW6fy5duoTMzMxW74G3trbGihUr8NZbbyEkJASrVq0ySjZRhUKh073St29f\nYXxBrVbjwIEDBj9mW+rq6nDx4kVhOysrSye99qBBg4yWDG7r1q0ICAhAZGQktmzZgrq6OlRUVABo\nCkp79+5FQECATpmW74fY97XTmOyapAUAtH27qVvBuioz+ZgLEhMTSaFQkEqlIn9/f/L396ddu3aR\np6cnubq6Co9FRUUREdGmTZvIx8eH/P39aeTIkbRjx44Oj3H27FkKCgoiPz+/Tu3SUavVlJSUJGxf\nvXqVVhjwVsGSkhLauHGjsJ2bm0uHDx82WP1ilJaW0sSJE8nT05MSExOFx0+fPk0BAQGkUqloxIgR\n9PHHHxMR0a+//kpKpZJsbGxowIABNGXKFCKS974ak1n8lQCg3btN3QrWVZlbMOgsjY2NFB0dTY6O\njvTNN9+Y5FZRoqa+8WYlJSW0fPlyYbu4uFgnWBQXF9PKlSuF7cLCQvr666+F7bq6OpP2q2/ZsoWc\nnJxo/vz5dP36dZO1wxgURKZflUKhUGDfPsLEiaZuCeuKFAqF2Sy+Ygrp6el4+umnodVqsXHjRiH9\nszlKSEgw6SzktpSWlmLGjBnIz89HTEwMxo0bZ+omGRyPGTDWxXl7eyMpKQnTp0/HmDFj8O6776Kq\nqsrUzbol1NfX44svvoCvry/8/Pxw6tSpLhkIAA4GjN0WrKyssGDBAhw/fhzZ2dnw8PDAwoULTZ61\n9EbmclWg0WjwxRdfwMPDA3v37sWePXuwbNky9OjRw9RNMxoOBozdRtzc3PDjjz/i999/R1paGoYN\nG4Y1a9Z0mRnG+iIi7NixA/7+/ti4cSM2bNiAHTt2wM/Pz9RNMzoOBozdhkaMGIGdO3di3bp1+O67\n7+Dh4YEffvjBYPMF5NJ3noFcWq0WO3fuxPDhw7FgwQIsWbIESUlJCA0NNUl7TIGDAWO3sXHjxiEx\nMRFfffUVVq9ejTvvvBPvvvtuh3mRuoqrV6/i008/xdChQ/HWW29h4cKFSEtLQ2RkpNmnnDY0vYJB\nfHw8vLy8MGTIECxduvSm58+dO4exY8fCxsYGn332Wbt1cTBgzDQUCgUeeOABHDx4EHv27EFpaSl8\nfHwwbdo07N+/v1PvxOqsMYOUlBQ888wzcHNzw8mTJ7F27Vqkpqbib3/7GywtLTulDeZG9q2lGo0G\nw4YNw759++Di4oJRo0Zhw4YNOlO/r1y5gtzcXGzduhV9+vTBq6++2nojFApcukQYPFjei2CsPbf7\nraVyXLt2DevXr8eKFStQU1ODiIgIREVFwdfX95b9xXzx4kV8//33iIuLQ01NDaKiovDMM8+gX79+\npm6aWZB9ZXDs2DF4enrCzc0N1tbWmDVrFuLi4nT26devH4KCgkRlBuQrA8bMh52dHV588UWcPn0a\na9asgbW1NSIjI+Hu7o5nnnkGO3fuRENDg8GPa8gxA41Gg8TERLz44ovw8fFBSEgILl++jE8//RRZ\nWVn417/+xYGgBdlJOwoKCnTWYFUqlTh69KjshnAwYMz8KBQKjBs3DuPGjcOyZctw9uxZxMXF4b33\n3sMTTzyBiIgIjB49GnfffTdGjBjRabn3W6PRaHDu3Dn8/vvvOHXqFHbs2IH+/fvjgQceQExMDEaN\nGqX3UpZdmexgYOhLRQ4GjJk3hUIBX19f+Pr6YtGiRSgqKsKOHTuQkJCA//73v8jJyYGvry+USiUm\nTZqEsWPHwsfHR1KAEDtmoNFocP78eaSkpGD79u0oLi5GWloaBgwYAD8/P4SFheGtt97CYO57Fk12\nMHBxcdFJFZuXlwelUim7IZ98shjduzf9PywszGwmn7BbT0JCgsluUbydODk5Ye7cucI6vdevX8ep\nU6dw/PhxJCcnY8WKFcjMzISdnR1cXV3h4uICZ2dnaDQaBAYGQqlUomfPnrC0tISVlRWsrKyg1WrR\n2NgItVqNuro6FBUV4ejRo7CwsEBJSQkKCwuRnZ2NyspKuLq6IjAwEMHBwQgMDMTIkSPRu3dvE5+V\nW5fsAWS1Wo1hw4Zh//79cHZ2xujRo28aQG62ePFi2NnZtTuAXFtLaJG1lzGD4QFk01Gr1SgpKUFR\nUREKCwuFfwsLC1FcXIyamhpcv34dFhYW0Gg0sLS0hFarRY8ePWBjYwMnJycMHDgQLi4ucHJygpOT\nE5ydnTFw4ECTdkl1RXolqtu9ezfmz58PjUaDOXPm4M0338SqVasAAC+88AKKi4sxatQoVFVVwcLC\nAnZ2dkhPT0evXr10G6FQQK0m3KZ3dDEj42DAWMfMJmupGTSDdVH8+WKsYzy0zhgzmry8PISHh8PH\nxwe+vr748ssvAQAzZ85EQEAAAgICMHjwYJ0VwaKjozFkyBB4eXlhz549wuPbt2+HSqUSxiiYYRln\nPTjGGEPTUpyff/45/P39UV1djcDAQEyePBmxsbHCPq+99pow8Jueno7Y2Fikp6ejoKAAkyZNQmZm\nJhQKBdavX4+TJ09i8eLFOHv2LHx8fEz1srokvjJgjBnNwIED4e/vDwDo1asXhg8fjsLCQuF5IsLP\nP/+M2bNnAwDi4uIwe/ZsWFtbw83NDZ6ensL8Ja1Wi/r6etTU1PDgsRFwMGCMdYqcnBycPHkSwcHB\nwmOJiYkYMGAAPDw8AACFhYU6t6grlUoUFBQAAJ5//nmEhobC0tISQ4YM6dzG3wa4m4gxZnTV1dWY\nPn06vvjiC527CTds2IDHHnus3bLNE1wnTZqE48ePG7WdtzMOBowxo2psbMS0adPwxBNP4KGHHhIe\nV6vV2LJlC1JTU4XHbpzMmp+fDxcXl05t7+2Ku4kYY0ZDRJgzZw68vb0xf/58nef27duH4cOHw9nZ\nWXgsMjISGzduRENDA7Kzs5GZmYnRo0d3drNvS3xlwBgzmsOHD2PdunXw8/MTbh+Njo7GlClTEBsb\nKwwcN/P29saMGTPg7e0NKysrrFy58pZNmX2r4UlnrMvjzxdjHeNuIsYYYxwMGGOMcTBgjDEGDgaM\nMcbAwYAxxhg4GDDGGAMHA8YYY+BgwBhjDBwMGGOMgYMBY4wxcDBgjDEGDgaMMcbAwYAxxhg4GDDG\nGAMHA8YYY+BgwBhjDBwMGGOMgYMBY4wxcDBgjDEGPYNBfHw8vLy8MGTIECxdurTVff7xj39gyJAh\nUKlUOHnypD6HY4wxZiSyg4FGo8Hf//53xMfHIz09HRs2bEBGRobOPrt27UJWVhYyMzPx7bffIioq\nSu8GdyQhIcFs6zPXugxdn7nWxRhrm+xgcOzYMXh6esLNzQ3W1taYNWsW4uLidPbZtm0bnnrqKQBA\ncHAwKioqUFJSol+LO8Bfkqavz1zrYoy1TXYwKCgowKBBg4RtpVKJgoKCDvfJz8+Xe0jGGGNGIjsY\nKBQKUfsRkaxyjDHGOo+Cbvy2FunIkSNYvHgx4uPjAQDR0dGwsLDAG2+8Iezz4osvIiwsDLNmzQIA\neHl54eDBgxgwYIBOXZ6enrh48aLc18BYu1QqFU6dOmXqZjBm1qzkFgwKCkJmZiZycnLg7OyM2NhY\nbNiwQWefyMhILF++HLNmzcKRI0fQu3fvmwIBAGRlZcltBmOMMQOQHQysrKywfPlyREREQKPRYM6c\nORg+fDhWrVoFAHjhhRcwdepU7Nq1C56enujZsydWr15tsIYzxhgzHNndRIwxxrqOTp2BbMhJah3V\ntX79eqhUKvj5+SEkJASnT5/Wq10AkJKSAisrK/z666/tvEpx9SUkJCAgIAC+vr4ICwuTXVdpaSmm\nTJkCf39/+Pr64ocffmizrmeffRYDBgzAiBEj2txH7PnvqC4p519MuwDx558xJgN1ErVaTR4eHpSd\nnU0NDQ2kUqkoPT1dZ5+dO3fSvffeS0RER44coeDgYNl1JSUlUUVFBRER7d69W6+6mvcLDw+n++67\njzZt2qTX6ywvLydvb2/Ky8sjIqIrV67Iruvdd9+lBQsWCPX07duXGhsbW63v0KFDlJqaSr6+vq0+\nL/b8i6lL7PkXUxeR+PPPGJOn064MDDlJTUxdY8eOhb29vVBXW/MbxNQFAF999RWmT5+Ofv366f06\nf/rpJ0ybNg1KpRIA4OjoKLsuJycnVFVVAQCqqqrg4OAAK6vWh4JCQ0PRp0+fNtsuZZJgR3WJPf9i\n6gLEn3/GmDydFgwMOUlNTF0tff/995g6dape7YqLixPSabQ3V0JMfZmZmbh69SrCw8MRFBSEtWvX\nyq5r7ty5OHv2LJydnaFSqfDFF1+02baOGGuSYHvnX2y7xJ5/xpg8su8mksqQk9SkfBkcOHAAMTEx\nOHz4sOx2zZ8/Hx999BEUCgWI6KY2Sq2vsbERqamp2L9/P2pqajB27FiMGTMGQ4YMkVzXhx9+CH9/\nfyQkJODixYuYPHky0tLSYGdn12HZ1og5/1J0dP7FkHL+GWPydFowcHFxQV5enrCdl5cndJO0tU9+\nfj5cXFxk1QUAp0+fxty5cxEfH99mN4SYuk6cOCFMnCstLcXu3bthbW2NyMhIWfUNGjQIjo6OsLW1\nha2tLcaPH4+0tLSbgoGYupKSkrBo0SIAgIeHBwYPHozz588jKCio1dfbHrHnXywx518MKeefMSZT\nZw1ONDY2kru7O2VnZ1N9fX2HA8jJycltDjqKqSs3N5c8PDwoOTlZ73a19PTTT9PmzZv1qi8jI4Mm\nTpxIarWarl+/Tr6+vnT27FlZdf3zn/+kxYsXExFRcXExubi4UFlZWZvty87OFjWA3N75F1OX2PMv\npq6WOjr/jDF5Ou3KwJCT1MTU9f7776O8vFzoZ7a2tsaxY8dk1WXo1+nl5YUpU6bAz88PFhYWmDt3\nLry9vWXVtXDhQjzzzDNQqVTQarX4+OOP0bdv31bbNnv2bBw8eBClpaUYNGgQ3nvvPTQ2Ngp1SZkk\n2FFdYs+/mLoYY8bHk84YY4zxspeMMcY4GDDGGAMHA8YYY+BgwBhjDBwMGGOMgYMBY4wxcDBgjDEG\nDgaMMcYA/B/PBcUPbKxwhwAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7fdf86780510>"
       ]
      }
     ],
     "prompt_number": 43
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-13.1, Page number: 546<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import atan,pi\n",
      "\n",
      "#Variable declaration\n",
      "freq = 3e9  #Frequency (Hz)\n",
      "Re_Zc = 14.4e-3 #Real part of intrinsic impedence of copper (ohm)\n",
      "Zd = 377    #Intrinsic impedence of air (ohm)\n",
      "\n",
      "#Calculation\n",
      "tau = atan(Re_Zc/Zd)*180/pi #Tilt angle (degrees)\n",
      "\n",
      "#Result\n",
      "print \"The tilt angle is\", round(tau,4), \"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The tilt angle is 0.0022 degrees\n"
       ]
      }
     ],
     "prompt_number": 88
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-13.2, Page number: 546<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import atan,pi,sqrt\n",
      "\n",
      "#Variable declaration\n",
      "freq = 3e9  #Frequency (Hz)\n",
      "eps_r = 80  #Relative permittivity of water (unitless)\n",
      "\n",
      "#Calculation\n",
      "tau = atan(1/sqrt(eps_r))*180/pi #Forward Tilt angle (degrees)\n",
      "\n",
      "#Result\n",
      "print \"The forward tilt angle is\", round(tau,1), \"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The forward tilt angle is 6.4 degrees\n"
       ]
      }
     ],
     "prompt_number": 89
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-13.3, Page number: 550<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import acos,pi\n",
      "\n",
      "#Variable declaration\n",
      "lambda_g = 1.5      #Wavelength in guide (lambda)\n",
      "m = -1  #Mode number\n",
      "\n",
      "\n",
      "#Calculation\n",
      "phi = acos((1/lambda_g)+m)*180/pi #Forward Tilt angle (degrees)\n",
      "\n",
      "#Result\n",
      "print \"The beam angle is\", round(phi,1), \"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The beam angle is 109.5 degrees\n"
       ]
      }
     ],
     "prompt_number": 90
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-14.1, Page number:552<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi, log10, sqrt\n",
      "\n",
      "#Variable declaration\n",
      "freq = 4e9      #Frequency (Hz)\n",
      "T_sys = 100     #System Temperature (K)\n",
      "S_N = 20        #Signal to Noise ratio (dB)\n",
      "bandwidth = 30e6    #Bandwidth (Hz)\n",
      "P_trans = 5     #Satellite transponder power (W)\n",
      "dia = 2         #Satellite parabolic dish diameter (m)\n",
      "sat_spacing = 2 #Spacing between satellites (degrees)\n",
      "r = 36000e3       #Downlink distance (m)\n",
      "k = 1.38e-23    #Boltzmann's constant (J/K)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "\n",
      "#Calculation\n",
      "wave_lt = c/freq\n",
      "s_n = (wave_lt**2)/(16*(pi**2)*(r**2)*k*T_sys*bandwidth)    \n",
      "s_n = 10*log10(s_n)     #Signal to noise ratio for isotropic antennas (dB)\n",
      "\n",
      "Ae = 0.5*pi*(dia**2)/4      #Effective Aperture (m^2)\n",
      "Gs = 4*pi*Ae/(wave_lt**2)   \n",
      "Gs = 10*log10(Gs)       #Antenna Gain (dB)\n",
      "\n",
      "Ge = 20 - s_n - Gs - 10*log10(P_trans) #Required earth station antenna gain(dB)\n",
      "Ae_e = (10**(Ge/10))*(wave_lt**2)/(4*pi)    \n",
      "            #Required earth station effective aperture (m^2)\n",
      "Ap = Ae_e*2     #Required Physical aperture (m^2)\n",
      "\n",
      "De = 2*sqrt(Ap/pi)      #Required diameter of earth-station antenna(m)\n",
      "hpbw = 65/(De/wave_lt)     #Half power beam width (degree)\n",
      "bwfn = 145/(De/wave_lt)    #Beamwidth between first null (degree)\n",
      "\n",
      "#Results\n",
      "print \"The required parabolic dish diameter of earth station antenna is\"\\\n",
      "                                , round(De,1), \"m\"\n",
      "print \"The Half power beamwidth is\", round(hpbw,1), \"degrees\"\n",
      "print \"The beamwidth between first null is\", round(bwfn,1), \"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required parabolic dish diameter of earth station antenna is 3.1 m\n",
        "The Half power beamwidth is 1.6 degrees\n",
        "The beamwidth between first null is 3.5 degrees\n"
       ]
      }
     ],
     "prompt_number": 93
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-20.1, Page number: 568<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "Tr = 45     #Satellite receiver temperature (K)\n",
      "rcp_gain = 6    #Right circularly polarized antenna gain (dBi)\n",
      "rcp_quad_gain = 3   #RCP gain of quadrifilar helix antenna (dBi)\n",
      "bandwidth = 9.6e3   #Bandwidth (Hz)\n",
      "snr = 10        #Required Signal-to-Noise ratio (dB)\n",
      "c = 3e8     #Speed of light (m/s)\n",
      "f = 1.65e9  #Frequency (Hz)\n",
      "r = 780e3   #Distance to the satellite (m)\n",
      "Ta = 300    #Antenna temperature (K)\n",
      "k = 1.4e-23 #Boltzmann's constant (J/K)\n",
      "theta = 10  #Zenith angle (degree)\n",
      "Tr_handheld = 75    #Hand held receiver temperature (K)\n",
      "Tsky = 6        #Sky Temperature (K)\n",
      "theta_horz = 80 #Zenith angle for horizontal dipole (degree)\n",
      "\n",
      "#Calculations\n",
      "wave_lt = c/f       #Wavelength (m)\n",
      "Ld = (wave_lt/(4*pi*r))**2 #Spatial loss factor(unitless)\n",
      "Ld_db = 10*log10(Ld)    #Spatial loss factor(dB)\n",
      "\n",
      "Tsys_up = Ta + Tr      #Satellite system temperature (K)\n",
      "N = k*Tsys_up*bandwidth    #Noise power(W)\n",
      "N_db = 10*log10(N)      #Noise power (dB)\n",
      "\n",
      "E_vert = cos(pi*cos(theta*pi/180)/2)/sin(theta*pi/180)\n",
      "        #Pattern factor for vertical lambda/2 dipole (unitless)\n",
      "E_vert_db = 20*log10(E_vert)\n",
      "\n",
      "Pt_vert_up = snr - (2.15 + round(E_vert_db,1) - 3) - \\\n",
      "                        rcp_gain + round(N_db) - round(Ld_db)\n",
      "                #Uplink power for vertical lambda/2 antenna (dB)\n",
      "Pt_vert_up = 10**(Pt_vert_up/10) \n",
      "                #Uplink power for vertical lambda/2 antenna (W)\n",
      "\n",
      "Ta_down = 0.5*(Ta)+0.5*(Tsky)+3   #Downlink antenna temperature (K)\n",
      "Tsys_down = Ta_down + Tr_handheld   #System temperature(K)\n",
      "N_down = k*Tsys_down*bandwidth  #Noise power (W)\n",
      "N_down_db = 10*log10(N_down)    #Noise power (dB)\n",
      "Pt_vert_down = snr -(2.15+ round(E_vert_db,1) - 3) - \\\n",
      "                        rcp_gain + round(N_down_db) - round(Ld_db)\n",
      "                #Downlink power for vertical lambda/2 antenna (dB)\n",
      "Pt_vert_down = 10**(Pt_vert_down/10)\n",
      "                #Downlink power for vertical lambda/2 antenna (W)\n",
      "\n",
      "E_horz = cos(pi*cos(theta_horz*pi/180)/2)/sin(theta_horz*pi/180)\n",
      "        #Pattern factor for horizontal lambda/2 dipole (unitless)\n",
      "E_horz_db = round(20*log10(E_horz),1)\n",
      "Pt_horz_up = snr -(2.15 + E_horz_db - 3) - \\\n",
      "                     rcp_gain + round(N_db) - round(Ld_db)\n",
      "                #Uplink power for horizonal lambda/2 dipole (dB)\n",
      "Pt_horz_up = 10**(Pt_horz_up/10)\n",
      "                #Uplink power for horizonal lambda/2 dipole (W)\n",
      "\n",
      "Pt_horz_down = snr -(2.15 + E_horz_db - 3) - \\\n",
      "                    rcp_gain + round(N_down_db) - round(Ld_db)\n",
      "                #Downlink power for horizonal lambda/2 dipole (dB)\n",
      "Pt_horz_down = 10**(Pt_horz_down/10)\n",
      "                #Downlink power for horizonal lambda/2 dipole (W)\n",
      "\n",
      "Pt_quad_up = snr -(rcp_quad_gain + E_horz_db) - \\\n",
      "                        rcp_gain + round(N_db) - round(Ld_db)\n",
      "                #Uplink power for RCP quadrifilar helix antenna (dB)\n",
      "Pt_quad_up = 10**(Pt_quad_up/10)\n",
      "                #Uplink power for RCP quadrifilar helix antenna (W)\n",
      "\n",
      "Ta_quad = 0.85*(Tsky) + 0.15*(Ta) #Downlink antenna temperature (K)\n",
      "Tsys_quad = Ta_quad + Tr_handheld   #System temperature(K)\n",
      "N_quad = k*Tsys_quad*bandwidth  #Noise power (W)\n",
      "N_quad_db = 10*log10(N_quad)    #Noise power (dB)\n",
      "\n",
      "Pt_quad_down = snr -(rcp_quad_gain + E_horz_db) - \\\n",
      "                        rcp_gain + round(N_quad_db) - round(Ld_db)\n",
      "                #Downlink power for RCP quadrifilar helix antenna (dB)\n",
      "Pt_quad_down = 10**(Pt_quad_down/10)\n",
      "                #Downlink power for RCP quadrifilar helix antenna (W)\n",
      "\n",
      "#Results\n",
      "print \"The Uplink power for vertical lambda/2 dipole is\", round(Pt_vert_up,1),\"W\"\n",
      "print \"The Uplink power for horizontal lambda/2 dipole is\", round(Pt_horz_up,3),\"W\"\n",
      "print \"The Uplink power for RCP quadrifilar helix antenna is\", round(Pt_quad_up,3),\"W\"\n",
      "\n",
      "print \"The downlink power for vertical lambda/2 dipole is\", round(Pt_vert_down,1),\"W\"\n",
      "print \"The downlink power for horizontal lambda/2 dipole is\", round(Pt_horz_down,3),\"W\"\n",
      "print \"The downlink power for RCP quadrifilar helix antenna is\",\\\n",
      "                    round(Pt_quad_down,3),\"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Uplink power for vertical lambda/2 dipole is 25.4 W\n",
        "The Uplink power for horizontal lambda/2 dipole is 0.507 W\n",
        "The Uplink power for RCP quadrifilar helix antenna is 0.209 W\n",
        "The downlink power for vertical lambda/2 dipole is 16.0 W\n",
        "The downlink power for horizontal lambda/2 dipole is 0.32 W\n",
        "The downlink power for RCP quadrifilar helix antenna is 0.066 W\n"
       ]
      }
     ],
     "prompt_number": 94
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-20.2, Page number: 571<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "f = 1.6e9       #Frequency (Hz)\n",
      "r = 1400e3      #Height (m)\n",
      "r_sep = 3500e3    #Height for 10 degree seperation (m)\n",
      "c = 3e8         #Speed of light(m/s)\n",
      "Ta = 300        #Satellite antenna temperature (K)\n",
      "Tr = 45         #Satellite receiver temperature (K)\n",
      "k = 1.3e-23     #Boltzmann's constant (J/K)\n",
      "bandwidth = 9.6e3   #Bandwidth (Hz)\n",
      "snr = 6         #Signal to noise ratio (dB)\n",
      "rcp_gain = 3    #Helix gain(dB)\n",
      "beam_angle = 25 #RCP spot beam (degree)\n",
      "Tsky = 6        #Sky Temperature (K)\n",
      "Tr_handheld = 75    #Hand held receiver temperature (K)\n",
      "\n",
      "\n",
      "#Calculations\n",
      "wave_lt = c/f       #Wavelength (m)\n",
      "Ld = (wave_lt/(4*pi*r))**2  \n",
      "Ld = 10*log10(Ld)       #Propagation loss factor (dB)\n",
      "sat_gain = 40000/(beam_angle**2)\n",
      "sat_gain = 10*log10(sat_gain)   #Satellite gain (dB)\n",
      "\n",
      "Tsys = Ta+Tr        #System temperature (K)\n",
      "N = k*Tsys*bandwidth    #Noise power (W)\n",
      "N_db = 10*log10(N)      #Noise power (dB)\n",
      "\n",
      "Pt_up = snr - (rcp_gain) - (sat_gain) + N_db - Ld   #Uplink power (dB)\n",
      "Pt_up = 10**(Pt_up/10)      #Uplink power (W)\n",
      "\n",
      "Ta_quad = 0.85*(Tsky) + 0.15*(Ta) #Downlink antenna temperature (K)\n",
      "Tsys_quad = Ta_quad + Tr_handheld   #System temperature(K)\n",
      "N_quad = k*Tsys_quad*bandwidth  #Noise power (W)\n",
      "N_quad_db = 10*log10(N_quad)    #Noise power (dB)\n",
      "\n",
      "Pt_down = snr - (rcp_gain) - (sat_gain) + round(N_quad_db) - round(Ld)  \n",
      "                                #Downlink power (dB)\n",
      "Pt_down = 10**(Pt_down/10)      #Downlink power (W)\n",
      "\n",
      "Ld_sep = (wave_lt/(4*pi*r_sep))**2  \n",
      "Ld_sep = 10*log10(Ld_sep)   #Propagation loss factor(dB)\n",
      "\n",
      "Pt_sep = snr - (rcp_gain) - sat_gain + ceil(N_db) - round(Ld_sep)\n",
      "                                #Uplink power (dB)\n",
      "Pt_sep = 10**(Pt_sep/10)        #Uplink power (W)\n",
      "\n",
      "#Results\n",
      "print \"The Satellite gain is\", round(sat_gain,1),\"dB\"\n",
      "print \"The Uplink power required is\", round(Pt_up,3),\"W\"\n",
      "print \"The Downlink power required is\",round(Pt_down,4),\"W\"\n",
      "print \"The uplink power required for 10 deg. from horizon is\",round(Pt_sep,3),\"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Satellite gain is 18.1 dB\n",
        "The Uplink power required is 0.012 W\n",
        "The Downlink power required is 0.0039 W\n",
        "The uplink power required for 10 deg. from horizon is 0.078 W\n"
       ]
      }
     ],
     "prompt_number": 97
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-20.3, Page number: 572<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import *\n",
      "\n",
      "#Variable declaration\n",
      "f = 30e9        #Frequency (Hz)\n",
      "Tr = 300        #Receiver temperature (K)\n",
      "Ta = 275        #Satellite antenna temperature (K)\n",
      "h = 1400e3      #Height (m)\n",
      "bw = 9.6e3      #Bandwidth per channel (Hz)\n",
      "rcp_gain = 10   #RCP satellite gain (dBi)\n",
      "rain_att = 10   #Rain attenuation (dB)\n",
      "k = 1.4e-23 #Boltzmann's constant (J/K)\n",
      "snr = 10    #Required SNR (dB)\n",
      "ap_eff = 0.7    #Aperture efficiency (unitless)\n",
      "Ta_2 = 10       #Dish antenna temperature (K)\n",
      "\n",
      "#Calculations\n",
      "wave_lt = c/f       #Wavelength (m)\n",
      "Ld = (wave_lt/(4*pi*r))**2 #Spatial loss factor(unitless)\n",
      "Ld_db = 10*log10(Ld)    #Spatial loss factor(dB)\n",
      "Tsys = Ta+Tr        #System temperature (K)\n",
      "\n",
      "N = k*Tsys*bw   #Propagation loss due to rain (W)\n",
      "N = 10*log10(N) #Propagation loss due to rain (dB)\n",
      "\n",
      "Dr = -rcp_gain + snr - Ld_db + N + rain_att #Antenna gain (dB)\n",
      "Dr = 10**(Dr/10)    #Antenna gain (unitless)\n",
      "\n",
      "Dr_req = Dr/ap_eff   #Required antenna gain (unitless)\n",
      "Dr_req_db = 10*log10(Dr_req)   #Required antenna gain (dB)\n",
      "\n",
      "dish_dia = 2*wave_lt*sqrt(Dr_req/28)    #Required diameter of dish (m)\n",
      "\n",
      "hpbw = sqrt(40000/Dr_req)   #Half power beam width (degrees)\n",
      "\n",
      "Tsys2 = Ta_2 + Tr   #System temperature(K)\n",
      "N2 = k*Tsys2*bw     #Propagation loss due to rain(W)\n",
      "N2 = 10*log10(N2)   #Propagation loss due to rain(dB)\n",
      "\n",
      "Pt_db = snr - Dr_req_db - rcp_gain + N2 - Ld_db + rain_att \n",
      "                                    #Transmitted power (dB)\n",
      "Pt = 10**(Pt_db/10)\n",
      "\n",
      "#Results\n",
      "print \"The uplink antenna gain required is\", round(Dr_req_db,0), \"dB\"\n",
      "print \"The required dish size\", round(dish_dia,3), \"m\"\n",
      "print \"The HPBW is\", round(hpbw,1), \"degrees\"\n",
      "print \"The downlink satellite power required is\", round(Pt,3), \"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The uplink antenna gain required is 35.0 dB\n",
        "The required dish size 0.221 m\n",
        "The HPBW is 3.4 degrees\n",
        "The downlink satellite power required is 0.377 W\n"
       ]
      }
     ],
     "prompt_number": 102
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-21.1, Page number: 574</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "\n",
      "dia = 1000    #diameter of asteroid (m)\n",
      "prc = 0.4     #Power reflection coefficient of asteroid (unitless)\n",
      "f = 4e9       #Frequency (Hz)\n",
      "P = 1e9       #Power (W)\n",
      "s = 20e3      #Asteroid speed (m/s)\n",
      "ast_dis = 0.4    #Distance of asteroid (AU)\n",
      "au = 1.5e11     #Astronomical Unit (m)\n",
      "c = 3e8       #Speed of light (m/s)\n",
      "k = 1.38e-23    #Boltzmann's constant (m^2 kg s^-2 K^-1)\n",
      "Tsys = 10      #System temperature (K)\n",
      "B = 1e6     #Bandwidth (Hz)\n",
      "snr = 10    #Signal to noise ratio (dB)\n",
      "eap = 0.75    #Aperture efficiency (unitless)\n",
      "\n",
      "sigma = prc*pi*s**2    #Radar cross section (m^2)\n",
      "ast_dm = au*ast_dis    #Astroid distance (m)\n",
      "lmda = c/f     #Wavelength(m)\n",
      "\n",
      "d4 = (64*(lmda**2)*(ast_dm**4)*k*Tsys*B*snr)/((eap**2)*pi*(sigma)*P)\n",
      "d = d4**(0.25)    #Diameter of dish (m)\n",
      "\n",
      "delf = 2*s/lmda    #Doppler shift (Hz)\n",
      "delt = 2*(ast_dm)/c    #Time delay (s)\n",
      "\n",
      "timp = ast_dm/s    #Time before impact (s) \n",
      "\n",
      "\n",
      "#Result\n",
      "print \"The diameter of the dish is\", round(d), \"m\"\n",
      "print \"The doppler shift is %.1f Hz\" % delf\n",
      "print \"The time delay for the radar signal is\", delt, \"s\"\n",
      "print \"The time before impact is\", timp, \"s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The diameter of the dish is 292.0 m\n",
        "The doppler shift is 533333.3 Hz\n",
        "The time delay for the radar signal is 400.0 s\n",
        "The time before impact is 3000000.0 s\n"
       ]
      }
     ],
     "prompt_number": 153
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15-26.1, Page number: 584<h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "t1 = 0.3e-9     #Echo time off the top of pavement (s)\n",
      "t2 = 2.4e-9     #Echo time off bottom of pavement (s)\n",
      "t3 = 14.4e-9    #Echo time off bottom of water pocket (s)\n",
      "er_1 = 4        #Relative permittivity of pavement (unitless)\n",
      "er_2 = 81       #Relative permittivity of water pocket (unitless)\n",
      "c = 3e8         #Speed of light (m/s)\n",
      "\n",
      "#Calculations\n",
      "d1 = (t2-t1)*c/(2*sqrt(er_1))\n",
      "d2 = (t3-t2)*c/(2*sqrt(er_2))\n",
      "\n",
      "#Result\n",
      "print \"The thickness of pavement is\", round(d1,2),\"m\"\n",
      "print \"The thickness of water pocket is\", round(d2,2), \"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thickness of pavement is 0.16 m\n",
        "The thickness of water pocket is 0.2 m\n"
       ]
      }
     ],
     "prompt_number": 104
    }
   ],
   "metadata": {}
  }
 ]
}