1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"chapter 05 : Practical Antennas-I"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 5.1 : page 5.57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"#For Single Turn:\n",
"from sympy import symbols, sqrt\n",
"lamda = symbols('lamda')\n",
"a=lamda/25\n",
"A=pi*pow(a,2)\n",
"Rr = (A/lamda**2)**2*31171.2\n",
"print \"radiation Resistance =\",round(Rr,4),\"Ohm for single turn \"\n",
"\n",
"#For Eight Turn:\n",
"N=8 #no. of turns\n",
"Rr=Rr*N**2 #in Ohm\n",
"print \"radiation Resistance = %0.2f Ohm for Eight turn \" %Rr"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"radiation Resistance = 0.7876 Ohm for single turn \n",
"radiation Resistance = 50.40 Ohm for Eight turn \n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 5.2 : page 5.58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, acos, sqrt \n",
"#Given data :\n",
"f=20.0 #in MHz\n",
"N=15.0 #No. of turns\n",
"A=2.0 #in m**2\n",
"Vrms=200.0 #in uV\n",
"theta=acos(1) #in radian\n",
"mu_o=4*pi*10**-7 #in H/m\n",
"#Formula : Vm=2*pi*f*mu_o*H*A*N\n",
"Vm=Vrms*sqrt(2) #in uV\n",
"H=(Vm*10**-6)/(2.0*pi*f*10**6*mu_o*A*N) #in A/m\n",
"print \"Peak Value of magnetic feld intensity = %0.3e mA/m \" %(H*1000) \n",
"#Note : Answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Peak Value of magnetic feld intensity = 5.970e-05 mA/m \n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 5.3 : page 5.58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#Given data :\n",
"f=20 #in MHz\n",
"f=f*10**6 #in Hz\n",
"Wmax=25 #in mW/m**2\n",
"A=10.0 #in m**2\n",
"c=3*10**8 #speed of light in m/s\n",
"lamda=c/f #in meter\n",
"Rr=31171.2*(A/lamda**2)**2 #iin Ohm\n",
"#Formula : Wmax=V**2/(4*Rr)\n",
"V=sqrt(Wmax*10**-3*4*Rr) #in Volts\n",
"print \"Maximum emf in the loop = %0.3f Volts \"%V "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum emf in the loop = 2.481 Volts \n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 5.4 : page 5.59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"#Given data :\n",
"N=20.0 #turns\n",
"D=1.0 #in meter\n",
"r=D/2 #in meter\n",
"E=200*10**-6 #in V/m\n",
"L=50*10**-6 #in H\n",
"R=2.0 #in Ohm\n",
"f=1.5 #in MHz\n",
"f=f*10**6 #in Hz\n",
"c=3*10**8 #speed of light in m/s\n",
"lamda=c/f #in meter\n",
"A=pi*r**2 #in m**2\n",
"Vrms=2*pi*E*A*N/lamda #in Volts\n",
"Q=2*pi*f*L/R #unitless\n",
"Vc_rms=Vrms*Q #in Volts\n",
"print \"Voltage across the capacitor = %0.2f mV\" %(Vc_rms*1000) \n",
"#Note : Answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage across the capacitor = 23.25 mV\n"
]
}
],
"prompt_number": 36
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 5.5 : page 5.59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, cos\n",
"#Given data :\n",
"N=100 #No. of turns\n",
"A=2 #in m**2\n",
"f=10 #in MHz\n",
"f=f*10**6 #in Hz\n",
"Q=150 #Quality factor\n",
"c=3*10**8 #speed of light in m/s\n",
"lamda=c/f #in meter\n",
"Erms=10*10**-6 #in V/m\n",
"theta=60 #in degree\n",
"Vrms=2*pi*Erms*A*N*cos(theta*pi/180)/lamda \n",
"Vin=Vrms*Q #in Volts\n",
"print \"Voltage to the receiver = %0.1f mV \" %(Vin*1000) \n",
"#Note : Answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage to the receiver = 31.4 mV \n"
]
}
],
"prompt_number": 40
}
],
"metadata": {}
}
]
}
|