1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"chapter 10 : Sky wave propagation - The ionospheric waves"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.1 : page 10-19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"H=500 #in km\n",
"n=0.8 #in m\n",
"f_muf=10 #in MHz\n",
"f_muf=f_muf*10**6 #in Hz\n",
"f=10 #in MHz\n",
"f=f*10**6 #in Hz\n",
"# Formula : n=sqrt(1-81*N/f**2)\n",
"Nmax=(1-n**2)*f**2/81 #in Hz \n",
"fc=9*sqrt(Nmax) #in Hz\n",
"Dskip=2*H*sqrt((f_muf/fc)**2-1) #in Km\n",
"print \"Assuming the earth is flat the range = %0.2f km\" %Dskip\n",
"#Note : Answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Assuming the earth is flat the range = 1333.33 km\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.2 : page 10-19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given data :\n",
"n=0.8 #in m\n",
"H=500 #in km\n",
"a=6370 #in km\n",
"D=1349.07 #in Km\n",
"f_muf=10 #in MHz\n",
"f_muf=f_muf*10**6 #in Hz\n",
"f=10 #in MHz\n",
"f=f*10**6 #in Hz\n",
"# Formula : n=sqrt(1-81*N/f**2)\n",
"Nmax=(1-n**2)*f**2/81 #in Hz \n",
"fc=9*sqrt(Nmax) #in Hz\n",
"# Formula : f_muf/fc=sqrt(D**2/(4*(H+D**2/(8*a))))+1\n",
"D1=2*(H+D**2/(8*a))*sqrt((f_muf/fc)**2-1) #in Km\n",
"Dskip=2*H*sqrt((f_muf/fc)**2-1) #in Km\n",
"print \"Assuming the earth is curved the ground range = %0.2f km\"% D1\n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Assuming the earth is curved the ground range = 1428.57 km\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.3 : page 10-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"Nmax=2.48*10**6 #in cm**-3\n",
"Nmax=2.48*10**6*10**-6 #in m**-3\n",
"fc=9*sqrt(Nmax) #in MHz\n",
"print \"Critical frequency = %0.2f MHz \" %fc "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Critical frequency = 14.17 MHz \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.4 : page 10-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"H=200 #in Km\n",
"D=4000 #in Km\n",
"fc=5 #in MHz\n",
"f_muf=fc*sqrt(1+(D/(2*H))**2) #in MHz\n",
"print \"MUF for the given path = %0.2f MHz \" %f_muf\n",
"#Note : Answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"MUF for the given path = 50.25 MHz \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.5 : page 10-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"#For F1 layer :\n",
"print \"For F1 layer :\" \n",
"Nmax=2.3*10**6 #in cm**3\n",
"Nmax=2.3*10**6*10**-6 #in m**3\n",
"fc=9*sqrt(Nmax) #in MHz\n",
"print \"Critical frequency = %0.2f MHz \" %fc \n",
"\n",
"#For F2 layer :\n",
"print \"For F2 layer :\" \n",
"Nmax=3.5*10**6 #in cm**3\n",
"Nmax=3.5*10**6*10**-6 #in m**3\n",
"fc=9*sqrt(Nmax) #in MHz\n",
"print \"Critical frequency = %0.2f MHz\" %fc\n",
"\n",
"#For F3 layer :\n",
"print \"For F3 layer :\" \n",
"Nmax=1.7*10**6 #in cm**3\n",
"Nmax=1.7*10**6*10**-6 #in m**3\n",
"fc=9*sqrt(Nmax) #in MHz\n",
"print \"Critical frequency = %0.2f MHz \" %fc "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For F1 layer :\n",
"Critical frequency = 13.65 MHz \n",
"For F2 layer :\n",
"Critical frequency = 16.84 MHz\n",
"For F3 layer :\n",
"Critical frequency = 11.73 MHz \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.6 : page 10-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"n=0.7 #refractive index\n",
"N=400 #in cm**-3\n",
"#Formula : n=sqrt(1-81*N/f**2)\n",
"f=sqrt(81*N/(1-n**2)) #in KHz\n",
"print \"Frequency of wave propagation = %0.2f kHz\" %f\n",
"#Note : Unit of Answer in the book is MHz. It is written by mistake. It is accurately calculated by scilab in KHz. "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of wave propagation = 252.05 kHz\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.7 : page 10-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"HT=169.0 #in meter\n",
"HR=20.0 #in meter\n",
"d=4.12*(sqrt(HT)+sqrt(HR)) #in Km\n",
"print \"Maximum distance = %0.2f km \" %d \n",
"r_dash=(4/3)*6370/1000 #in Km\n",
"RadioHorizon=sqrt(2*r_dash*HT) #in Km\n",
"print \"Radio Horizon = %0.2f km \" %RadioHorizon\n",
"# Answe wrong in thetextbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum distance = 71.99 km \n",
"Radio Horizon = 45.03 km \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.8 : page 10-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import tan , pi, asin, cos\n",
"H=200 #in Km\n",
"Beta=20 #in Degree\n",
"a=6370 #in Km\n",
"D_flat=2*H/tan(Beta*pi/180) #in Km\n",
"print \"If earth assumed to be flat transmission path distance = %0.2f km\" %D_flat\n",
"D_curved=2*a*(90*pi/180-Beta*pi/180)-asin(a*cos(Beta*pi/180)/(a+H))\n",
"print \"If earth assumed to be curved transmission path distance = %0.2f \"%D_curved\n",
"# Answe wrong in thetextbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"If earth assumed to be flat transmission path distance = 1098.99 km\n",
"If earth assumed to be curved transmission path distance = 15563.70 \n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.9 : page 10-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import acos\n",
"#given data :\n",
"R=6370 #in Km\n",
"hm=400 #in Km\n",
"#Formula : d=2*R*Q=2*R*acos(R/(R+hm))\n",
"d=2*R*acos(R/(R+hm)) #in Km\n",
"print \"Maximum Range in a single range transmission = %0.2f km \" %d \n",
"# Answe wrong in thetextbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum Range in a single range transmission = 20011.95 km \n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.10 : page 10-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"n=0.6 #refractive index\n",
"N=4.23*10**4 #in m**-3\n",
"#Formula : n=sqrt(1-81*N/f**2)\n",
"f=sqrt(81*N/(1-n**2)) #in Hz\n",
"print \"Frequency of wave propagation = %0.3f kHz\" %(f/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of wave propagation = 2.314 kHz\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exa 10.11 : page 10-23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#given data :\n",
"n=0.8 #refractive index\n",
"N=500 #in cm**-3\n",
"#Formula : n=sqrt(1-81*N/f**2)\n",
"f=sqrt(81*N/(1-n**2)) #in KHz\n",
"print \"Frequency of wave propagation = %0.2f kHz\" %f "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of wave propagation = 335.41 kHz\n"
]
}
],
"prompt_number": 24
}
],
"metadata": {}
}
]
}
|