1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
{
"metadata": {
"name": "",
"signature": "sha256:8165b8e5dad1d709dff36c0fb8461bb25ed06730a63d035a743672c074cb35cf"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter07, Loop Antenna"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 7.10.1, page : 7-16"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"A=1 #m\u00b2(Area of loop)\n",
"N=400 #no. of turns\n",
"Q=100 #Quality factor\n",
"theta=60 #degree(angle)\n",
"Erms=10 #\u00b5V/m(field strength)\n",
"f=1 #MHz(tuned frequency)\n",
"c=3*10**8 #m/s##Speed of light\n",
"lamda=c/(f*10**6) #m(Wavelength)\n",
"Vr=Q*2*np.pi*A*N*np.cos(theta*np.pi/180)*Erms*10**-6/lamda #V(reciever input voltage)\n",
"print \"Input voltage to the receiver = %0.3f mV \" %(Vr*1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Input voltage to the receiver = 4.189 mV \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 7.10.2, page : 7-17"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"N=12 #no. of turns\n",
"A=1 #m\u00b2(Area of loop)\n",
"Erms=100 #\u00b5V/m(field strength)\n",
"f=10 #MHz(tuned frequency)\n",
"theta=0 #degree(angle)\n",
"c=3*10**8 #m/s##Speed of light\n",
"lamda=c/(f*10**6) #m(Wavelength)\n",
"Vr=2*np.pi*A*N*np.cos(theta*np.pi/180)*Erms*10**-6/lamda #V(reciever input voltage)\n",
"print \"Voltage induced in loop = %0.2f \u00b5V/m \" %(Vr*10**6) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage induced in loop = 251.33 \u00b5V/m \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 7.10.3, page : 7-17"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"N=25 #no. of turns\n",
"Vrms=150 #\u00b5V(emf induced)\n",
"f=500 #kHz(tuned frequency)\n",
"A=0.5**2 #m\u00b2(Area of loop)\n",
"theta=0 #degree(angle)\n",
"c=3*10**8 #m/s##Speed of light\n",
"lamda=c/(f*10**3) #m(Wavelength)\n",
"Erms=lamda/(2*np.pi*A*N*np.cos(theta*np.pi/180))*Vrms*10**-6 #V/m(maximum emf induced)\n",
"print \"Field strength = %0.3f mV/m \"%(Erms*10**3) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Field strength = 2.292 mV/m \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 7.10.4, page : 7-17"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"N1=1.0 #no. of turns in primary\n",
"N2=8.0 #no. of turns in secondary\n",
"#a=lamda/25 \n",
"aBYlamda=1.0/25 #(temporary calculation)\n",
"#A=np.pi*a**2\n",
"A_BY_lamda_sqr=np.pi*aBYlamda**2 #(temporary calculation)\n",
"Rr1=31200*(N1*A_BY_lamda_sqr)**2 #\u03a9(Radiation resistance for single turn)\n",
"print \"Radiation resistance for single turn loop = %0.4f \u03a9 \" %(Rr1) \n",
"Rr2=31200*(N2*A_BY_lamda_sqr)**2 #\u03a9(Radiation resistance for 8 turn)\n",
"print \"Radiation resistance for 8 turn loop = %0.2f \u03a9 \" %Rr2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Radiation resistance for single turn loop = 0.7883 \u03a9 \n",
"Radiation resistance for 8 turn loop = 50.45 \u03a9 \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 7.10.5, page : 7-18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"f=100 #MHz(Operating frequency)\n",
"c=3*10**8 #m/s##Speed of light\n",
"lamda=c/(f*10**6) #m(Wavelength)\n",
"a=lamda/25 #m(radius)\n",
"C=2*np.pi*a #m(Circumference)\n",
"d=2*10**-4*lamda #m(Spacing)\n",
"print \"For single turn : \" \n",
"N=1 #n. of turns\n",
"RL_BY_Rr=3430.0/(C**3*f**(3.5)*N*d) #(temporary calculation)\n",
"K=1/(1+RL_BY_Rr)*100 #%(Radiation efficiency)\n",
"print \"Radiation efficiency of single turn = %0.2f %%\" %K\n",
"print \"For Eight turn : \" \n",
"N=8 #no. of turns\n",
"RL_BY_Rr=3430/(C**3*f**(3.5)*N*d) #(temporary calculation)\n",
"K=1/(1+RL_BY_Rr)*100 #%(Radiation efficiency)\n",
"print \"Radiation efficiency of eight turn = %0.2f %%\" % K"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For single turn : \n",
"Radiation efficiency of single turn = 42.85 %\n",
"For Eight turn : \n",
"Radiation efficiency of eight turn = 85.71 %\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 7.10.6, page : 7-19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from fractions import Fraction\n",
"a=0.5 #m(radius)\n",
"f=0.9 #MHz(OPerating frequency)\n",
"c=3*10**8 #m/s##Speed of light\n",
"lamda=c/(f*10**6) #m(wavelength)\n",
"C=2*np.pi*a #m(Circumference)\n",
"if C/lamda<1/3:\n",
" D=3/2 #Directivity\n",
"elif C/lamda>1/3:\n",
" D=0.682*C/lamda #Directivity\n",
"\n",
"print \"Directivity :\" ,Fraction(D)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Directivity : 3/2\n"
]
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}
|