1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
{
"metadata": {
"name": "",
"signature": "sha256:4d6e811d421f337f1031f361be319cf058aca6316009f472b471c43a8dde51c6"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter12, Reflector Antennas"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 12.9.1, page : 12-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import log10\n",
"D=2 #m(Diameter)\n",
"f=6000 #MHz(Frequency)\n",
"c=3*10**8 #m/s##speed of light\n",
"lamda=c/(f*10**6) #m(Wavelength)\n",
"FNBW=140*lamda/D #degree\n",
"print \"First null beam width, FNBW = %0.1f degree \"%FNBW \n",
"GP=6*(D/lamda)**2 #unitless(Power gain)\n",
"GP_dB=10*log10(GP) #dB(Power gain)\n",
"print \"Power Gain = %0.2f dB\"%GP_dB\n",
"#Ans in the book is not accurate."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"First null beam width, FNBW = 3.5 degree \n",
"Power Gain = 39.82 dB\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 12.9.2, page : 12-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log10, sqrt\n",
"\n",
"GP=1000 #unitless(Power gain)\n",
"lamda=10 #cm(Wavelength)\n",
"D=sqrt(GP/6)*(lamda/100) #m(Diameter)\n",
"print \"Diameter of mouth = %0.2f meter\" %D\n",
"HPBW=58*(lamda/100)/D #degree(HPBW)\n",
"print \"Half power beam width, HPBW = %0.2f degree\"%HPBW"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diameter of mouth = 1.29 meter\n",
"Half power beam width, HPBW = 4.49 degree\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example No. 12.9.3, page : 12-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log10, sqrt, pi\n",
"D=6 #meter(Diameter)\n",
"f=10 #GHz(Frequency)\n",
"c=3*10**8 #m/s##speed of light\n",
"lamda=c/(f*10**9) #m(Wavelength)\n",
"GP=6*(D/lamda)**2 #unitless(Power gain)\n",
"GP_dB=10*log10(GP) #dB(Power gain)\n",
"print \"Gain = %0.2f dB \"%GP_dB\n",
"FNBW=140*lamda/D #degree(FNBW)\n",
"print \"FNBW = %0.2f degree \"%FNBW \n",
"HPBW=58*lamda/D #degree(HPBW)\n",
"print \"HPBW = %0.2f degree \"%HPBW \n",
"K=0.65 #constant\n",
"Ao=K*pi/4*D**2 #m\u00b2(Capture area)\n",
"print \"Capture area = %0.2f m\u00b2 \"%Ao "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Gain = 53.80 dB \n",
"FNBW = 0.70 degree \n",
"HPBW = 0.29 degree \n",
"Capture area = 18.38 m\u00b2 \n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|