1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
{
"metadata": {
"name": "chapter 12.ipynb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12: Aperture Antennas"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.2, Page no. 675"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Assume lamda = 50\n",
"lamda=50.0\n",
"a=3*lamda\n",
"b=2*lamda\n",
"n=1\n",
"\n",
"theta_1=114.6*(math.asin(n*lamda/b))\n",
"print \"First Null Beamwidth:\",theta_1,\"deg\"\n",
"\n",
"theta_h=114.6*math.asin(0.443*lamda/b)\n",
"print \"Half-power beamwidth:\",theta_h,\"deg\"\n",
"\n",
"theta_s=114.6*math.asin(1.43*lamda/b)\n",
"print \"First Sidelobe Beamwidth:\",theta_s,\"deg\"\n",
"\n",
"E_s=0.217\n",
"print \"Maximum of first side lobe:\",20*log10(E_s),\"dB\"\n",
"\n",
"D0=4*pi*a*b/lamda**2\n",
"print \"Maximum directivity:\",10*log10(D0),\"dB\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"First Null Beamwidth: 60.0044196836 deg\n",
"Half-power beamwidth: 25.5961863013 deg\n",
"First Sidelobe Beamwidth: 91.2931226067 deg\n",
"Maximum of first side lobe: -13.270805323\n",
"Maximum directivity: 18.7736111441 dB\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.4, Page no. 683"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"lamda=50.0\n",
"\n",
"#For a=b=20*lamda\n",
"print \"For a=b=20*lamda, the efficiency for the uniform aperture is 94%.\"\n",
"\n",
"a=b=3*lamda\n",
"k=2*pi/lamda\n",
"theta1=10*pi/180\n",
"u=(k*a/2)*sin(theta1)\n",
"\n",
"print \"For u = %f, the efficiency is 58.\"%u"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For a=b=20*lamda, the efficiency for the uniform aperture is 94%.\n",
"For u = 1.636596, the efficiency is 58.\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.5, Page no. 696"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"lamda=50.0\n",
"theta=30*pi/180\n",
"a_sq=b_sq=lamda/(2*sin(theta))\n",
"D0=pi/sin(theta)**2\n",
"print \"Directivity of square patch is : %f dB\" %(10*log10(D0))\n",
"\n",
"a_cir=lamda/(3.413*sin(theta))\n",
"D0cir=(1.079*pi)/(sin(theta)**2)\n",
"print \"Directivity of circular patch is : %f dB\" %(10*log10(D0cir))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Directivity of square patch is : 10.992099 dB\n",
"Directivity of circular patch is : 11.322313 dB\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.6, Page no. 699"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"Zc=73+42.5j #Characteristic impedance\n",
"eta=376.7\n",
"\n",
"Zs=eta**2/(4*Zc)\n",
"print \"Terminal(input) impedance od the slot:\",Zs,\"Ohms\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Terminal(input) impedance od the slot: (362.948424022-211.305589328j) Ohms\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|