1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
{
"metadata": {
"name": "",
"signature": "sha256:aabc27335f32d474a45f64beecf83a23fa9bf81cfd70dd0ed540cf40b23a5726"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6 - Noise"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1 - pg 281"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the RMS noise voltage\n",
"import math\n",
"#given\n",
"R = 10.*10**3#resistance of amplifier in ohms\n",
"T = 273.+27#temperature in kelvin\n",
"B = (20.-18)*10**6#bandwidth\n",
"k = 1.38*10**-23#boltzman's constant\n",
"\n",
"#calculations\n",
"V_n = math.sqrt(4*R*k*T*B)*10**6;#rms noise voltage\n",
"\n",
"#result\n",
"print \"Rms noise voltage (muV) = \",round(V_n,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rms noise voltage (muV) = 18.2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2 - pg 281"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the RMS noise voltage\n",
"import math\n",
"#given\n",
"R_1 = 300.#equivalent noise resistance\n",
"R_2 = 400.#input resistance\n",
"T = 273+27.#temperature in kelvin\n",
"B = 7.*10**6#bandwidth\n",
"k = 1.38*10**-23#boltzman's constant\n",
"\n",
"#calculations\n",
"R_s = R_1 +R_2#effective resistance in series\n",
"V_nr = math.sqrt(4*k*T*B*R_s)*10**6#rms noise voltage\n",
"\n",
"#result \n",
"print \"Rms noise voltage (muV) = \",round(V_nr,0)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rms noise voltage (muV) = 9.0\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3 - pg 282"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Noise voltage in all cases\n",
"import math\n",
"from math import sqrt\n",
"#given\n",
"R_1 = 20*10**3#resistance one\n",
"R_2 = 50*10**3#resistance two\n",
"T = 273+15#temperature in kelvin\n",
"B = 100*10**3#bandwidth\n",
"k = 1.38*10**-23#boltzman's constant\n",
"\n",
"#calculations\n",
"R_s = R_1 +R_2#series effective resistance\n",
"R_p = (R_1*R_2)/(R_1 + R_2)#parallel effective resistance\n",
"V_1 = sqrt(4*k*T*R_1*B)*10**6#noise voltage in R_1\n",
"V_2 = sqrt(4*k*T*R_1*B)*10**6#noise voltage in R_2\n",
"V_s = sqrt(4*k*T*R_s*B)*10**6#noise voltage when resistance connected in series\n",
"V_p = sqrt(4*k*T*R_p*B)*10**6#noise voltage when resistance connected in parallel\n",
"\n",
"#results\n",
"print \"i.Noise voltage due to R_1 (muV) = \",round(V_1,2)\n",
"print \"ii.Noise voltage due to R_2 (muV) = \",round(V_2,2)\n",
"print \"iii.Noise voltage due to two resistance in series (muV) = \",round(V_s,2)\n",
"print \"iv.Noise voltage due to two resistance in parallel (muV) = \",round(V_p,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Noise voltage due to R_1 (muV) = 5.64\n",
"ii.Noise voltage due to R_2 (muV) = 5.64\n",
"iii.Noise voltage due to two resistance in series (muV) = 10.55\n",
"iv.Noise voltage due to two resistance in parallel (muV) = 4.77\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4 - pg 283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Equivalent input noise resistance\n",
"\n",
"#given\n",
"A_1 = 10.#voltage gain for first stage\n",
"A_2 = 25.#volatage gain for second stage\n",
"R_i1 = 600.#input resistance for first stage in ohms\n",
"R_eq1 = 1600.#equivalent noise resistance for first stage \n",
"R_01 = 27.*10**3#Output resistance for first stage \n",
"R_i2 = 81.*10**3#input resistance for second stage\n",
"R_eq2 = 10.*10**3#Equivalent noise resistance for second stage \n",
"R_02 = 1.*10**6#putput resistance for second case\n",
"\n",
"#calculations\n",
"R_1 = R_i1 + R_eq1\n",
"R_2 = ((R_01*R_i2)/(R_01+R_i2)) + R_eq2\n",
"R_3 = R_02\n",
"R_eq = R_1 + (R_2/A_1**2) + R_3/(A_1**2 *A_2**2);\n",
"\n",
"#results\n",
"print \"Equivalent input noise resistance (Ohms) = \",round(R_eq,0)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent input noise resistance (Ohms) = 2519.0\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7 - pg 295"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the output voltage\n",
"import math\n",
"#given\n",
"T = 273. + 17#temperature in kelvin\n",
"Q = 10.#quality factor\n",
"c = 10.*10**-12#capacitance\n",
"f_r = 100.*10**6#resonate frequency\n",
"k = 1.38*10**-23#boltzman's constant\n",
"\n",
"#calculations\n",
"delta_f = f_r/Q#bandwidth of the tuned circuit\n",
"w = 2*math.pi*f_r;#angular frequency\n",
"R = 1/(Q*w*c);#resistance\n",
"V_no = math.sqrt(4*k*Q**2*T*delta_f*R)*10**6 #output voltage\n",
"\n",
"#results\n",
"print \"Output voltge (V) = \",round(V_no,0)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Output voltge (V) = 16.0\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8 - pg 297"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Noise figure and Equivalent temperature\n",
"import math\n",
"#given\n",
"R_a = 50.#antenna resistance\n",
"R_eq = 30.#equivalent noise resistance of receiver\n",
"T_0 = 290.#initial temperature in degree kelvin\n",
"#calculations\n",
"F = 1+(R_eq/R_a);#noise figure\n",
"F_dB = 10*math.log10(F)#noise figure in decibels\n",
"T_eq = T_0*(F-1)#equivalent temperature\n",
"\n",
"#results\n",
"print \"i.Noise figure in decibels (dB) = \",round(F_dB,2)\n",
"print \"ii.Equivalent temperature (degree kelvin) = \",T_eq\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Noise figure in decibels (dB) = 2.04\n",
"ii.Equivalent temperature (degree kelvin) = 174.0\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9 - pg 302"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Noise figure\n",
"import math\n",
"#given\n",
"R_eq = 2518.#equivalent resistance in ohms\n",
"R_t = 600.#input impedence in ohms\n",
"R_a= 50.#output impedencre in ohms\n",
"\n",
"#calculations\n",
"R_eq1 = R_eq - R_t;\n",
"F = 1 + (R_eq1/R_a) #noise figure\n",
"F_dB = 10*math.log10(F)#noise figure in dB\n",
"\n",
"#results\n",
"print \"Noise figure in dB = \",round(F_dB,2)\n",
"print \"Note:Calculation mistake is their in text book in finding noise figure in dB\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Noise figure in dB = 15.95\n",
"Note:Calculation mistake is their in text book in finding noise figure in dB\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10 - pg 305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Overall noise figure\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"F_1 = 2.#noise figure of first stage in dB\n",
"A_1 = 12.#gain in first stage in dB\n",
"F_2 = 6.#noise figure of second stage in dB\n",
"A_2 = 10.#gain in first second in dB \n",
"\n",
"\n",
"#calculations\n",
"F_1ratio = exp((F_1/10)*log(10));#noise figure of first stage in ratio \n",
"F_2ratio = exp((F_2/10)*log(10));#noise figure of second stage in ratio \n",
"A_1ratio = exp((A_1/10)*log(10));#gain of first stage in ratio\n",
"A_2ratio = exp((A_2/10)*log(10));#gain of second stage in ratio\n",
"F = F_1ratio + ((F_2ratio - 1)/(A_1ratio));#Overall noise figure \n",
"F_dB = 10*log10(F);#Overall noise figure in dB\n",
"\n",
"#results\n",
"print \"Overall noise figure (dB) = \",round(F_dB ,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall noise figure (dB) = 2.5\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11 - pg 306"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Overall noise figure\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"F_1 = 9.#noise figure for first stage in dB\n",
"F_2 = 20.#noise figure for second stage in dB\n",
"A_1 = 15.#gain in first stage in dB\n",
"\n",
"#calculations\n",
"F_1ratio = exp((F_1/10)*log(10));#noise figure of first stage in ratio \n",
"F_2ratio = exp((F_2/10)*log(10));#noise figure of second stage in ratio \n",
"A_1ratio = exp((A_1/10)*log(10));#gain of first stage in ratio\n",
"F = F_1ratio + ((F_2ratio - 1)/(A_1ratio));\n",
"F_dB = 10*log10(F);\n",
" \n",
"#results\n",
"print \"Overall noise figure (dB) = \", round(F_dB,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall noise figure (dB) = 10.44\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12 - pg 307"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the rms noise voltage\n",
"import math\n",
"#given\n",
"f_1 = 18.*10**6#lower operating frequency in Hz\n",
"f_2 = 20.*10**6#lower operating frequency in Hz\n",
"T = 273. + 17#temperature in kelvin\n",
"R = 10.*10**3#input resistance\n",
"k = 1.38*10**-23#boltzman's constant\n",
"\n",
"#calculations\n",
"B = f_2 - f_1#bandwidth in Hz\n",
"V_n = math.sqrt(4*k*B*R*T)*10**6;#rms noise voltage\n",
"\n",
"#results\n",
"print \"rms noise voltage (muV) = \",round(V_n,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"rms noise voltage (muV) = 17.9\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14 - pg 308"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Meter reading, resistance\n",
"\n",
"#given\n",
"A = 60.#gain of noiseless amplifier\n",
"V_n1 = 1.*10**-3#output of the amplifier\n",
"B = 20.*10**3#initial bandwidth\n",
"B1 = 5.*10**3#change in bandwidth\n",
"k = 1.38*10**-23#boltzman's constant\n",
"T = 273. + 80#temperature in degree kelvin\n",
"\n",
"#calculaitons\n",
"#since the bandwidth is reesuced to 1/4th of its value,therefore the noise voltage \n",
"#will be V_n proportional to sqrt(B)\n",
"#Hence, the noise voltage at 5KHz will become half its value at 20KHz bandwidth i.e,\n",
"V_n = .5*10**-3#noise voltage in volts\n",
"V_no = V_n1/A;#noise ouput voltage \n",
"R = (V_no**2/(4*k * T * B ));#resistance at 80degree celcius\n",
"\n",
"#results\n",
"print \"i.Meter reading in volts (V) = \",V_n\n",
"print \"ii.Resistance at 80 degree celcius (kohms) = \",round(R/1000.,0)\n",
"print \"Note: There is calculation mistake in textbook in the measurement of resistance they took constant in formula as 1 instead of 4\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Meter reading in volts (V) = 0.0005\n",
"ii.Resistance at 80 degree celcius (kohms) = 713.0\n",
"Note: There is calculation mistake in textbook in the measurement of resistance they took constant in formula as 1 instead of 4\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16 - pg 309"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Overall noise figure\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"A_1 = 10.#gain in first stage in dB\n",
"A_2 = 10.#gain in second stage in dB\n",
"A_3 = 10.#gain in third stage in dB\n",
"F_1 = 6.#noise figure for first stage in dB\n",
"F_2 = 6.#noise figure for second stage in dB\n",
"F_3 = 6.#noise figure for third stage in dB\n",
"\n",
"#calculations\n",
"F_1ratio = exp((F_1/10)*log(10));#noise figure of first stage in ratio \n",
"F_2ratio = exp((F_2/10)*log(10));#noise figure of second stage in ratio \n",
"F_3ratio = exp((F_3/10)*log(10));#noise figure in third stage in ratio \n",
"A_1ratio = exp((A_1/10)*log(10));#gain of first stage in ratio\n",
"A_2ratio = exp((A_2/10)*log(10));#gain of second stage in ratio\n",
"A_3ratio = exp((A_3/10)*log(10));#gain of third stage in ratio\n",
"F = F_1ratio + ((F_2ratio - 1)/(A_1ratio)) + ((F_3ratio - 1)/(A_2ratio*A_1ratio));#Overall noise figure\n",
"\n",
"#results\n",
"print \"Overall noise figure of three stage cascaded amplifier = \",round(F,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall noise figure of three stage cascaded amplifier = 4.31\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17 - pg 310"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Overall noise figure\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"G_1 = 10.#gain in first stage in dB\n",
"#noise figure for both the stages are same\n",
"F_1 = 10.#noise figure for first stage in dB\n",
"F_2 = 10.#noise figure for second stage in dB\n",
"\n",
"#calculations\n",
"F_1ratio = exp((F_1/10)*log(10));#noise figure of first stage in ratio \n",
"F_2ratio = exp((F_2/10)*log(10));#noise figure of second stage in ratio \n",
"G_1ratio = exp((G_1/10)*log(10));#gain of first stage in ratio\n",
"F = F_1ratio + ((F_2ratio - 1)/(G_1ratio));#Overall noise figure\n",
"F_dB= 10*log10(F)##Overall noise figure in dB\n",
"\n",
"#results\n",
"\n",
"print \"Overall noise figure (dB) = \", round(F_dB,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall noise figure (dB) = 10.37\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 18 - pg 310"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the overall noise figure and overall gain\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"G_1 = 4.#gain in first stage in dB\n",
"G_2 = 10.#gain in second stage in dB\n",
"F_1 = 10.#noise figure for first stage in dB\n",
"F_2 = 10.#noise figure for second stage in dB\n",
"\n",
"#calculations\n",
"F_1ratio = exp((F_1/10)*log(10));#noise figure of first stage in ratio \n",
"F_2ratio= exp((F_2/10)*log(10));#noise figure of second stage in ratio \n",
"G_1ratio = exp((G_1/10)*log(10));#gain of first stage in ratio\n",
"G_2ratio = exp((G_2/10)*log(10));#gain of second stage in ratio\n",
"F = F_1ratio + ((F_2ratio - 1)/(G_1ratio));#Overall noise figure \n",
"G = log10(G_1ratio *G_2ratio );\n",
"F_dB= 10*log10(F)##Overall noise figure in dB\n",
"\n",
"#results\n",
"print \"i.Overall noise figure (dB) = \",round(F_dB,2)\n",
"print \"ii.Overall gain (dB) = \",G \n",
"print \"Note:There is mistake in calculation of overall gain in textbook\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Overall noise figure (dB) = 11.33\n",
"ii.Overall gain (dB) = 1.4\n",
"Note:There is mistake in calculation of overall gain in textbook\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19 - pg 310"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Overall noise figure\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"G_1 = 15.#gain in first stage in dB\n",
"F_1 = 9.#noise figure for first stage in dB\n",
"F_2 = 20.#noise figure for second stage in dB\n",
"\n",
"#calculations\n",
"F_1ratio = exp((F_1/10)*log(10));#noise figure of first stage in ratio \n",
"F_2ratio = exp((F_2/10)*log(10));#noise figure of second stage in ratio \n",
"G_1ratio = exp((G_1/10)*log(10));#gain of first stage in ratio\n",
"F = F_1ratio + ((F_2ratio - 1)/(G_1ratio));#Overall noise figure \n",
"F_dB= 10*log10(F)##Overall noise figure in dB\n",
"\n",
"#results\n",
"print \"Overall noise figure (dB) = \", round(F_dB,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall noise figure (dB) = 10.44\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 20 - pg 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Noise temperature and overall noise temperature\n",
"import math\n",
"from math import exp, log10,log\n",
"#given\n",
"F_2 = 20.#noise figure of receiver in dB\n",
"G_1 = 40.#gain of low noise amplifier in dB\n",
"T_e1 = 80.#noise temperature of low noise amplifier in degree kelvin\n",
"T_0 = 300.#room temperature\n",
"\n",
"#calculations\n",
"F_2ratio = exp((F_2/10)*log(10));#noise figure of receiver in ratio \n",
"G_1ratio = exp((G_1/10)*log(10));#gain of low noise amplifier\n",
"T_e2 = (F_2ratio-1)*T_0#noise temperature of the receiver in degree kelvin\n",
"T_e = T_e1 +(T_e2/G_1ratio)#overall noise temperature in degree kelvin\n",
"\n",
"#results\n",
"print \"i.Noise Temperature of the receiver (degkelvin) = \",T_e2\n",
"print \"ii.Overall noise temperature (degkelvin) = \",T_e\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Noise Temperature of the receiver (degkelvin) = 29700.0\n",
"ii.Overall noise temperature (degkelvin) = 82.97\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 21 - pg 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the overall noise temperature and noise figure\n",
"import math\n",
"#given from the figure\n",
"G_1ratio = 1000.#gain of master amplifier \n",
"G_2ratio = 100.#gain of TWT\n",
"G_3ratio = 10000.#gain of mixer and IF amplifier\n",
"F_2ratio = 4.#noise figure of TWT \n",
"F_3ratio = 16.#noise figure of mixer and IF amplifier\n",
"T_0 =273 + 17.#ambident temperature in degree kelvin\n",
"T_e1 = 5.#temperature of master amplifier in degree kelvin\n",
"\n",
"#calculaitons\n",
"F_1 = 1 + (T_e1/T_0);#noise figure of master amplifier\n",
"F = F_1 + ((F_2ratio - 1)/(G_1ratio)) + ((F_3ratio - 1)/(G_2ratio*G_1ratio));#Overall noise figure\n",
"F_dB = 10*math.log10(F);#overall noise figure in dB\n",
"T_e = (F - 1)*T_0;#overall noise temperature of the receiver \n",
"\n",
"#results\n",
"print \"i.Overall noise temperature of the receiver (degreekelvin) = \",round(T_e,0)\n",
"print \"ii.Overall noise figure (dB) = \", round(F_dB,5)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Overall noise temperature of the receiver (degreekelvin) = 6.0\n",
"ii.Overall noise figure (dB) = 0.08767\n"
]
}
],
"prompt_number": 18
}
],
"metadata": {}
}
]
}
|