1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
{
"metadata": {
"name": "",
"signature": "sha256:67ee8e7b784b607cbab75ad3758612a5810d648f2de452b74761d1700d1555d3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10 - Digital Multiplexers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1 - pg 469"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the minimum value of permissible sampling rate\n",
"\n",
"#given\n",
"X_1 = 4.*10**3#first analog signal in Hz\n",
"X_2 = 4.5*10**3#second analog signal in Hz\n",
"\n",
"#calculation\n",
"#the highest frequency cmponent of the composite signal consisting among two signal is X_2\n",
"f_sMIN = 2*X_2;\n",
"\n",
"print \"The minimum value of permissible sampling rate (kHz) = \",f_sMIN/1000.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum value of permissible sampling rate (kHz) = 9.0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2 - pg 469"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the signalling rate and minimum channel bandwidth\n",
"\n",
"#given\n",
"X_1 = 6.*10**3#Nyquist rate in Hz obtained the table\n",
"X_2 = 2.*10**3#Nyquist rate in Hz obtained the table\n",
"X_3 = 2.*10**3#Nyquist rate in Hz obtained the table\n",
"X_4 = 2.*10**3#Nyquist rate in Hz obtained the table\n",
"\n",
"#calculations\n",
"s = 2000#speed of rotation\n",
"X1 = 3*s#number of samples produced per second for first signal\n",
"X2 = 1*s#number of samples produced per second for second signal\n",
"X3 = X2#number of samples produced per second for third signal\n",
"X3 = X2#number of samples produced per second for fourth signal\n",
"SR = X1 + 3*X2#signalling rate\n",
"BW = .5*SR#minimum channel bandwidth \n",
"\n",
"#results\n",
"print \"If the sampling commutator rotates at the rate of 2000 rotations per second the the signals X_1,X_2,X_3,X_4 will be sampled at their Nyquist rate\"\n",
"print \"Signalling rate (samples per second) = \",SR\n",
"print \"Minimum channel bandwidth (Hz) = \",BW\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"If the sampling commutator rotates at the rate of 2000 rotations per second the the signals X_1,X_2,X_3,X_4 will be sampled at their Nyquist rate\n",
"Signalling rate (samples per second) = 12000\n",
"Minimum channel bandwidth (Hz) = 6000.0\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3 - pg 470"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the sampling rate and Nyquist rate\n",
"\n",
"#given\n",
"SR = 8000.#sampling rate in samples per second\n",
"T = 1.*10**-6#pulse duration\n",
"f = 3.4*10**3#highest frequency component\n",
"\n",
"#calculations\n",
"#second case\n",
"NR = 2.*f#Nyquist rate of sampling\n",
"T2 = 1./NR#time taken for one rotation of commutator\n",
"\n",
"\n",
"#results\n",
"print \"sampling rate for first condition = \",SR\n",
"print \"There are 24 voice signals + 1 synchronizing pulse\"\n",
"print \"Pulse width of each voice channel and synchronizing pulseis 1 microseconds \"\n",
"print \"Now, time taken by the commutator for 1 rotation =1/8000 = 125*10**-6 seconds\"\n",
"print \"Number of pulses produced in one rotation = 24 + 1 = 25\"\n",
"print \"Therefore, the leading edges of the pulses are at 125/25 = 5*10^-6 seconds distance\"\n",
"print \"Nyquist rate for second condition (kHz) = \",NR/1000.\n",
"print \"Time taken for one rotation of commutator (museconds) = \",round(T2*10**6,2)\n",
"print \"Therefore, 147*10**-6 seconds corresponds to 25 pulses\"\n",
"print \"therefore, 1 pulse corresponds to 5.88*10^-6 seconds\"\n",
"print \"As the pulse width of each pulse is 1*10^-6 seconds, the spacing between adjacent pulses will be 4.88*10**-6 seconds\\n and if we assume tou = 0 then the spacing between the adjacent pulses will be 5.88*10**-6 seconds \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"sampling rate for first condition = 8000.0\n",
"There are 24 voice signals + 1 synchronizing pulse\n",
"Pulse width of each voice channel and synchronizing pulseis 1 microseconds \n",
"Now, time taken by the commutator for 1 rotation =1/8000 = 125*10**-6 seconds\n",
"Number of pulses produced in one rotation = 24 + 1 = 25\n",
"Therefore, the leading edges of the pulses are at 125/25 = 5*10^-6 seconds distance\n",
"Nyquist rate for second condition (kHz) = 6.8\n",
"Time taken for one rotation of commutator (museconds) = 147.06\n",
"Therefore, 147*10**-6 seconds corresponds to 25 pulses\n",
"therefore, 1 pulse corresponds to 5.88*10^-6 seconds\n",
"As the pulse width of each pulse is 1*10^-6 seconds, the spacing between adjacent pulses will be 4.88*10**-6 seconds\n",
" and if we assume tou = 0 then the spacing between the adjacent pulses will be 5.88*10**-6 seconds \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4 - pg 471"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the Signaling rate and minimum channel bandwidth\n",
"\n",
"#given\n",
"N = 6.#number of channels\n",
"f_m = 5.*10**3#bandwidth of each channel\n",
"\n",
"#calculations\n",
"SR1= 2*f_m#minimum sampling rate\n",
"SR = N*SR1#sampling rate\n",
"BW =N*f_m#minimum channel bandwidth\n",
"\n",
"#results\n",
"print \"Signaling rate (Kbits per second) = \",SR/1000.\n",
"print \"Minimum channel bandwidth (kHz) = \",BW/1000.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Signaling rate (Kbits per second) = 60.0\n",
"Minimum channel bandwidth (kHz) = 30.0\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6 - pg 476"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the number of framing plus signaling bits per frame\n",
"\n",
"#given\n",
"channel=64*10**3 #kb/s\n",
"bitrate=2.048*10**6 #bits/sec\n",
"\n",
"#calculations\n",
"fs_min=channel*2\n",
"x=bitrate/fs_min\n",
"\n",
"#results\n",
"print 'No. of bits per frame = ',x"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No. of bits per frame = 16.0\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|