1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
{
"metadata": {
"name": "",
"signature": "sha256:217b3507f45091d99aa496d838ab43e552e1e20629747bd44a2cad35220ffe6a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 24: Fuselage frames and wing ribs"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 24.1 Pg.No.638"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import numpy\n",
"import math\n",
"#reference Fig 42.2\n",
"l1=250 #length of each section(mm)\n",
"l2=200 #length of DK(mm)\n",
"l3=100 #length of KH(mm)\n",
"F1=4000\n",
"F2=5000 #forces as shown in Fig 24.1\n",
"theta=60 #force angle from DH (degree)\n",
"\n",
"#solve (i) and (ii) equation\n",
"a=numpy.array([[1,-1],[200,100]])\n",
"b=numpy.array([13.8564,2000])\n",
"q=numpy.linalg.solve(a,b)\n",
"q1=q[0]\n",
"q2=q[1]\n",
"q3=F1*math.cos(math.radians(theta))/(l2+l3)\n",
"q4=F1*math.cos(math.radians(theta))/(l2+l3)+F2/(l2+l3)\n",
"P_A=l1*q1+l1*q3+l1*q4\n",
"P_E=-l1*q2-l1*q3-l1*q4\n",
"P=3464.1\n",
"M_AE=F2*l1+F1/2*3*l1-P*50\n",
"\n",
"P_A=M_AE/(l2+l3)+P/2\n",
"P_E=-M_AE/(l2+l3)+P/2\n",
"\n",
"print \"shear flow as shown in Fig 24.1\\n\"\n",
"print \"q1=%2.2f N/mm\\n\"%(q1)\n",
"print \"q2=%2.2f N/mm\\n\"%(q2)\n",
"print \"q3=%2.2f N/mm\\n\"%(q3)\n",
"print \"q4=%2.2f N/mm\\n\"%(q4)\n",
"\n",
"print \"Stiffener load at point A = %2.2f N/mm(tension)\\n\"%(P_A)\n",
"print \"Stiffener load at point E = %2.2f N/mm(compression)\\n\"%(P_E) #in book another method is also explained"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"shear flow as shown in Fig 24.1\n",
"\n",
"q1=11.29 N/mm\n",
"\n",
"q2=-2.57 N/mm\n",
"\n",
"q3=6.67 N/mm\n",
"\n",
"q4=23.33 N/mm\n",
"\n",
"Stiffener load at point A = 10321.37 N/mm(tension)\n",
"\n",
"Stiffener load at point E = -6857.27 N/mm(compression)\n",
"\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 24.2 Pg.No.645"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import numpy as np\n",
"import math\n",
"\n",
"A1=50000\n",
"A2=95000 #area shown in Fig 24.13(mm^2)\n",
"A3=95000\n",
"\n",
"A4=46000\n",
"A5=49000 #area shown in Fig 24.11 (mm^2)\n",
"\n",
"F1=12000\n",
"F2=15000 #forces shown in Fig 24.9 (N)\n",
"\n",
"l1=l3=300\n",
"l2=320 #lengths and angle shown in Fig 24.9\n",
"alpha=15\n",
"\n",
"#solve equation (i)&(iii)\n",
"a=np.array([[600,-600],[190000,290000]])\n",
"b=np.array([12000,440000])\n",
"q=np.linalg.solve(a,b)\n",
"q12=q[0]\n",
"q23=q[1]\n",
"q31=(F2+l1*q23)/l1\n",
"print \"shear flows are shown in Fig 24.9 (flanges)\"\n",
"print \"q12=%2.2f N/mm\"%(q12)\n",
"print \"q23=%2.2f N/mm\"%(q23)\n",
"print \"q31=%2.2f N/mm\\n\"%(q31)\n",
"\n",
"Sy_1=7*l3\n",
"Px4=Px2=2*A1*7/l1\n",
"Py2=Py4=Px4*math.tan(math.radians(alpha))\n",
"q1=(2100-2*625.2)/l1\n",
"P2=P4=(Px4**2+Py4**2)**0.5\n",
"P5=P6=2*((A1+A4)*7-A5*13)/l2\n",
"q2=(7*l1+7*10-13*10)/l2\n",
"q3=(6.4*l2+F2)/l2\n",
"\n",
"M3=2*((A1+A2)*7-A2*13)+F2*l1\n",
"Px1=Px3=M3/l1\n",
"Py1=Py3=3626.2\n",
"P1=P3=(Px1**2+Py1**2)**.5\n",
"q3=(17100-2*Py1)/l1\n",
"\n",
"print \"Loads in webs \"\n",
"print \"P4=P2=%2.2f N\"%(P2)\n",
"print \"P6=P5=%2.2f N\"%(P6)\n",
"print \"P3=P1=%2.2f N\\n\"%(P1)\n",
"\n",
"print \"shear flow in webs\"\n",
"print \"q1=%2.2f N/mm\"%(q1)\n",
"print \"q2=%2.2f N/mm\"%(q2)\n",
"print \"q3=%2.2f N/mm (this value is given at the end of example)\"%(q3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"shear flows are shown in Fig 24.9 (flanges)\n",
"q12=13.00 N/mm\n",
"q23=-7.00 N/mm\n",
"q31=43.00 N/mm\n",
"\n",
"Loads in webs \n",
"P4=P2=2415.64 N\n",
"P6=P5=218.75 N\n",
"P3=P1=14010.73 N\n",
"\n",
"shear flow in webs\n",
"q1=2.83 N/mm\n",
"q2=6.38 N/mm\n",
"q3=32.83 N/mm (this value is given at the end of example)\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|