1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
{
"metadata": {
"name": "",
"signature": "sha256:c3ab3016805321c8a28748b1937c77b2125357dfc661b20013df0624feaa950e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 16: Bending of open and closed thin-walled beams \n"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.1 Pg. No.456"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Fig 16.6 Dimensions\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#variable declaration\n",
"l=300 #length of I section (mm)\n",
"b=200 #width of I section beam (mm)\n",
"w1=25 #width of center section of I beam (mm)\n",
"w2=20 #width of upper and lower section of I beam (mm)\n",
"M=100*10**6 #moment applied in vertical plane (N*mm)\n",
"\n",
"#second moment of area Ixx\n",
"# Ixx=b*l^3/12\n",
"Ixx=b*l**3/12-(b-w1)*(l-w2-w2)**3/12\n",
"print \"\\nSecond moment of area of I section beam = %5.3e mm^4\"%(Ixx)\n",
"\n",
"#sigma_z=My/I reference 16.9\n",
"# @ \n",
"y=150\n",
"sigma_z=M*y/Ixx\n",
"print \"\\ndirect stress at the top of the I section (y=150) = %3.2f N/mm^2 (compression)\"%(sigma_z)\n",
"\n",
"# @\n",
"y=-150\n",
"sigma_z=M*y/Ixx\n",
"print \"\\ndirect stress at the bottom of the I section (y=-150) = %3.2f N/mm^2 (tension)\"%(sigma_z)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Second moment of area of I section beam = 1.937e+08 mm^4\n",
"\n",
"direct stress at the top of the I section (y=150) = 77.45 N/mm^2 (compression)\n",
"\n",
"direct stress at the bottom of the I section (y=-150) = -77.45 N/mm^2 (tension)\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.2 Pg. No.457"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Fig 16.6 reference\n",
"from __future__ import division\n",
"import math\n",
"\n",
"#variable declaration\n",
"l=300 #length of I section (mm)\n",
"b=200 #width of I section beam (mm)\n",
"w1=25 #width of center section of I beam (mm)\n",
"w2=20 #width of upper and lower section of I beam (mm)\n",
"M=100*10**6 #moment applied in vertical plane (N*mm)\n",
"\n",
"# second moment of area\n",
"# Iyy=wb^3/12\n",
"Iyy=2*20*200**3/12+260*25**3/12\n",
"print \"\\nSecond moment of area of I section beam = %5.3e mm^4\"%(Iyy)\n",
"\n",
"#sigma_z=Mx/I \n",
"# @ \n",
"x=100\n",
"sigma_z=M*x/Iyy\n",
"print \"\\ndirect stress at the top of the I section (y=150) = %3.2f N/mm^2 (compression)\"%(sigma_z)\n",
"\n",
"# @\n",
"x=-100\n",
"sigma_z=M*x/Iyy\n",
"print \"\\ndirect stress at the bottom of the I section (y=-150) = %3.2f N/mm^2 (tension)\"%(sigma_z)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Second moment of area of I section beam = 2.701e+07 mm^4\n",
"\n",
"direct stress at the top of the I section (y=150) = 370.30 N/mm^2 (compression)\n",
"\n",
"direct stress at the bottom of the I section (y=-150) = -370.30 N/mm^2 (tension)\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.3 Pg.No.458 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#variable declaration\n",
"l=300 #length of I section (mm)\n",
"b=200 #width of I section beam (mm)\n",
"w1=25 #width of center section of I beam (mm)\n",
"w2=20 #width of upper and lower section of I beam (mm)\n",
"M=100*10**6 #moment applied in vertical plane (N*mm)\n",
"theta=30 #angle at which bending moment is applied(degree)\n",
"\n",
"Mx=M*math.cos(math.radians(30))\n",
"My=M*math.sin(math.radians(30))\n",
"\n",
"# sigma_z=Mx/Ixx*y+My/Iyy*x\n",
"# @top left hand corner\n",
"y=150\n",
"x=-100\n",
"sigma_z=Mx/Ixx*y-My/Iyy*x \n",
"print \"\\ndirect stress at the top left hand corner = %3.1f N/mm^2 (tension)\"%(sigma_z)\n",
"\n",
"# @ top right hand corner\n",
"x=100\n",
"y=150\n",
"sigma_z=Mx/Ixx*y-My/Iyy*x \n",
"print \"\\ndirect stress at the top right hand corner = %3.1f N/mm^2 (compression)\"%(sigma_z)\n",
"\n",
"alpha=math.atan(My*Ixx/Mx/Iyy)\n",
"print \"\\ninclination = %3.1f degree\\n\"%(alpha*180/math.pi)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"direct stress at the top left hand corner = 252.2 N/mm^2 (tension)\n",
"\n",
"direct stress at the top right hand corner = -118.1 N/mm^2 (compression)\n",
"\n",
"inclination = 76.4 degree\n",
"\n"
]
}
],
"prompt_number": 38
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.4 Pg.No.466"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# reference Fig 16.13\n",
"import math\n",
"from __future__ import division\n",
"#variable declaration\n",
"l=80 #length of one section (mm)\n",
"w=8 #thickness of each section (mm)\n",
"b1=40 #width of one section (mm)\n",
"b2=80 #width of other section (mm)\n",
"Mx=1500*10*3 #bending moment (N.mm)\n",
"My=0\n",
"\n",
"#centroid\n",
"# in this example C is taken at top surface x axis aligned to AB and y axis is \n",
"# aligned to E surface \n",
"y_bar=((b1+b2)*w*w/2+l*w*(w+l/2))/(l*w+(b1+b2)*w)\n",
"print \"\\ny coordinate of centroid = %3.1f mm\"%(y_bar)\n",
"\n",
"x_bar=((b1+b2)*w*((b1+b2)/2-b1+w/2)+l*w*(w/2))/(l*w+(b1+b2)*w)\n",
"print \"\\nx coordinate of centroid = %3.1f mm\"%(x_bar)\n",
"\n",
"#second area of moment\n",
"#IB=IC+Ab^2 IB=moment about any point,IC=moment about centroid, b=distace between both points\n",
"Ixx=(b1+b2)*w**3/12+(b1+b2)*w*(y_bar-w/2)**2+w*l**3/12+l*w*(w+l/2-y_bar)**2\n",
"print \"\\nsecond moment of area about x axis = %3.2e mm^4\"%(Ixx)\n",
"\n",
"Iyy=w*(b1+b2)**3/12+(b1+b2)*w*((b1+b2)/2-b1+w/2-x_bar)**2+l*w**3/12+l*w*(x_bar-w/2)**2\n",
"print \"\\nsecond moment of area about y axis = %3.2e mm^4\"%(Iyy)\n",
"\n",
"Ixy=(b1+b2)*w*(y_bar-w/2)*((b1+b2)/2-b1+w/2-x_bar)+l*w*(w+l/2-y_bar)*(x_bar-w/2)\n",
"print \"\\nsecond moment of area about x and y axis = %3.2e mm^4\"%(Ixy)\n",
"\n",
"Mx=15*10**5\n",
"def f(x,y):\n",
" return Mx*(Iyy*y-Ixy*x)/(Ixx*Iyy-Ixy**2)\n",
"sigma_z_max= f(-8,-66.4)\n",
"print \"\\nmaximum direct shear stress = %3.0f N/mm^2 (compressive)\\n\"%(sigma_z_max)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"y coordinate of centroid = 21.6 mm\n",
"\n",
"x coordinate of centroid = 16.0 mm\n",
"\n",
"second moment of area about x axis = 1.09e+06 mm^4\n",
"\n",
"second moment of area about y axis = 1.31e+06 mm^4\n",
"\n",
"second moment of area about x and y axis = 3.38e+05 mm^4\n",
"\n",
"maximum direct shear stress = -96 N/mm^2 (compressive)\n",
"\n"
]
}
],
"prompt_number": 62
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|