summaryrefslogtreecommitdiff
path: root/Aircraft_Structures_for_Engineering_Students/Chapter08.ipynb
blob: 65ccbf76e1e4e9991ae3b2549eb18a54a7bed8a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{
 "metadata": {
  "name": "",
  "signature": "sha256:d4ab160ecba8745ef027bb167a7abbd97977707c483b1d0a639c7f068e2016a8"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 08: Columns"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3 Pg.No.280"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "E=75000         #youngs modulus(N/mm^2)\n",
      "G=21000          #shear modulus (N/mm^2)\n",
      "L=2              #length of column (m)\n",
      "l1=75            #flange length (mm)\n",
      "l2=37.5            #total length(mm)\n",
      "t=2.5            #thickness(mm)\n",
      "\n",
      "A=t*(2*l2+l1)         #observed from Fig 8.17\n",
      "\n",
      "#chapter 16  Ixx=bd^3/12+Ab^2\n",
      "Ixx=2*l2*t*l2**2+t*l1**3/12\n",
      "Iyy=2*t*l2**3/12\n",
      "\n",
      "I0=Ixx+Iyy\n",
      "\n",
      "#eqn 18.11 J=SUM((s*t^3)/3)\n",
      "J=2*l2*t**3/3+l1*t**3/3\n",
      "\n",
      "Gama=t*l2**3*l1**2/24\n",
      "Iyy=0.22*10**5\n",
      "L=2*10**3\n",
      "P_CRxx=math.pi**2*E*Ixx/L**2\n",
      "P_CRyy=math.pi**2*E*Iyy/L**2\n",
      "P_CRo=A/I0*(G*J+math.pi**2*E*Gama/L**2)\n",
      "\n",
      "print \"P_CRxx = %3.2e N\\n\"%(P_CRxx)\n",
      "print \"P_CRyy = %0.1e N\\n\"%(P_CRyy)\n",
      "print \"P_CRO = %0.2e N\\n\"%(P_CRo)\n",
      "\n",
      "print \"therefore buckling in the column due to axial load=%0.1e N\\n\"%(P_CRyy)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "P_CRxx = 6.51e+04 N\n",
        "\n",
        "P_CRyy = 4.1e+03 N\n",
        "\n",
        "P_CRO = 2.22e+04 N\n",
        "\n",
        "therefore buckling in the column due to axial load=4.1e+03 N\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4 Pg.No.282"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "import numpy as np\n",
      "from sympy import solve, symbols, pprint\n",
      "from sympy import diff\n",
      "P=symbols('P')\n",
      "\n",
      "E=70000        #youngs modulus (N/mm^2)\n",
      "G=30000         #shear modulus (N/mm^2)\n",
      "x_S=-76.2        #position of shear center(mm)\n",
      "l1=l2=100        #lengths (mm)\n",
      "t=2              #thickness(mm)\n",
      "\n",
      "x_bar=2*t*l1*50/(3*l1)/2\n",
      "\n",
      "A=600         #area (mm^2)\n",
      "Ixx=1.17*10**6    #second moment of area (mm^4)\n",
      "Iyy=0.67*10**6    #second moment of area (mm^4)\n",
      "I0=5.32*10**6     # total second moment of area (mm^4)\n",
      "J=800              #torsion constant (mm^4)\n",
      "Gama=2488*10**6     #(mm^6)\n",
      "L=10**3             #(mm)\n",
      "\n",
      "P_CRxx=math.pi**2*E*Ixx/L**2\n",
      "P_CRyy=math.pi**2*E*Iyy/L**2\n",
      "P_CRo=A/I0*(G*J+math.pi**2*E*Gama/L**2)\n",
      "\n",
      "fun=P**2*(1-A*x_S**2/I0)-P*(P_CRxx+P_CRo)+P_CRxx*P_CRo\n",
      "solution = solve(fun, P)\n",
      "print \"lowest value of critical load = %1.2e N\\n\"%(min(solution))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "lowest value of critical load = 1.68e+05 N\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}