1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
{
"metadata": {
"name": "",
"signature": "sha256:b0248b236fb77321aca1aa897efa31136042f1022b99d1754ff155338956fea7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter9-Aerothermo-dynamics of Gas Turbines "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg537"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calcualte inlet velocity and the exit double mach number and nozzle torque per unit mass flow rate \n",
"Tt1=1800.\n",
"M1=0.55\n",
"alfa1=0.\n",
"gm=1.33\n",
"Cp=1157.\n",
"alfa2=60.\n",
"T1=Tt1/(1.+(gm-1)*M1**2/2.)\n",
"a1=((gm-1.)*Cp*T1)**(1/2.)\n",
"C1=a1*M1\n",
"C2=C1/math.cos(alfa2/57.3)\n",
"Tt2=Tt1\n",
"T2=Tt2-C2**2/(2*Cp)\n",
"a2=((gm-1)*Cp*T2)**(1/2)\n",
"M2=C2/a2\n",
"Ct2=C1*math.tan(alfa2/57.3)\n",
"r=0.35\n",
"t=0-r*Ct2\n",
"print\"%s %.4f %s\"%(\"(a)Inlet velocity C1 in m/s :\",C1,\"\")\n",
"print\"%s %.4f %s\"%(\"(b)The exit absolute Mach no. M2 :\",M2,\"\")\n",
"print\"%s %.4f %s\"%(\"(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m :\",t,\"\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Inlet velocity C1 in m/s : 444.9857 \n",
"(b)The exit absolute Mach no. M2 : 889.8525 \n",
"(c)Nozzle torque per unit mass flow rate for r1=r2=0.35m : -269.7102 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg538"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate the nozzle exit flow angle\n",
"print(\"Example 9.2\")\n",
"M2=1.0 ##i.e choked\n",
"Tt2=1800.\n",
"gm=1.33\n",
"C1=445.\n",
"Cp=1157.\n",
"T2=Tt2/(1.+(gm-1.)*M2**2/2.)\n",
"a2=((gm-1.)*Cp*T2)**(1/2.) \n",
"M2=1\n",
"C2=M2*a2\n",
"alfa2=math.acos(C1/C2)*180/math.pi\n",
"print\"%s %.4f %s\"%(\"Nozzle exit flow angle if M2=1 in degrees:\",alfa2,\"\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Example 9.2\n",
"Nozzle exit flow angle if M2=1 in degrees: 54.5931 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ex3-pg538"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate axial velocity and rotor velocity and degree of reaction at this radius\n",
"C1=411.\n",
"alfa2=60.\n",
"C2=800.\n",
"W2=450.\n",
"alfa3=13.\n",
"C3=411.\n",
"Cz2=C2*math.cos(60/57.3)\n",
"Cz3=C3*math.cos(13/57.3)\n",
"Ct2m=Cz3*math.tan(60/57.3)\n",
"Wt2m=(450.**2.-400**2.)**(1/2.)\n",
"Um=Ct2m-Wt2m\n",
"Ct3=C3*math.sin(13/57.3)\n",
"Rm=1-(Ct2m+Ct3)/(2.*Um)\n",
"print\"%s %.4f %s\"%(\"(a)The axial velocities up- and downstream of the rotor in m/s:\",Cz2,\"c\")\n",
"print'%.4f'%(Cz3)\n",
"print\"%s %.4f %s\"%(\"(b)The rotor velocity Um in m/s:\",Um,\"\")\n",
"print\"%s %.4f %s\"%(\"(c)The degree of reaction at this radius :\",Rm,\"\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The axial velocities up- and downstream of the rotor in m/s: 400.0534 c\n",
"400.4676\n",
"(b)The rotor velocity Um in m/s: 487.3515 \n",
"(c)The degree of reaction at this radius : 0.1936 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg553"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate the loss of turbine efficiency due to tip clearance\n",
"Cd=0.5\n",
"bm=-20.\n",
"r=1.25\n",
"phi=0.5\n",
"chi=1.\n",
"t=0.02\n",
"\n",
"De=Cd*t*r*(1-(chi/phi)*math.tan(bm/57.3))**(1/2.)\n",
"print\"%s %.4f %s\"%(\"Loss of the turbine efficiency (eta0 times) :\",De,\"\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Loss of the turbine efficiency (eta0 times) : 0.0164 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Ex5-pg560"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate gas static temperature and adibatic wall temperature on the nozzle for a turbulent boundary layer \n",
"Tt=1700. ##total gas temp at exit\n",
"gm=1.33 ##gamma\n",
"Cp=1157. ##in J/kg.K\n",
"M2=1. ##local gas Mach no.\n",
"Pr=0.71 ## Prandtl no.\n",
"W2=455. ## gas speed relative to rotor\n",
"Tg=Tt/(1.+(gm-1)*(M2**2)/2.)\n",
"print\"%s %.3f %s \"%(\"The gas static temperature Tg in K:\",Tg,\"\")\n",
"a2=((gm-1)*Cp*Tg)**(1/2.)\n",
"C2=a2\n",
"r=Pr**(1/3.)\n",
"Taw=Tg+Pr**(1/3.)*C2**2./(Cp)\n",
"print\"%s %.3f %s \"%(\"The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K:\",Taw,\"\")\n",
"Ttr=Tg+(W2**2)/(2*Cp)\n",
"Tawl=Tg+Pr**(1/2)*C2**2/(Cp)\n",
"print\"%s %.3f %s \"%(\"The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: \",Tawl,\"\")\n",
"print\"%s %.3f %s \"%(\"The rotor temperature of the gas on the rotor in K:\",Ttr,\"\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The gas static temperature Tg in K: 1459.227 \n",
"The adiabatic wall temperatue Taw on the nozzle for a turbulent boundary layer in K: 1888.820 \n",
"The adiabatic wall temperature on the nozzle for a laminar boundary layer in K: 1940.773 \n",
"The rotor temperature of the gas on the rotor in K: 1548.694 \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg564"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#calculate cooling fraction\n",
"T0=288. ##in K\n",
"p0=100. ##in kPa\n",
"Tt3=800. ##in K\n",
"gm=1.4\n",
"Cpc=1.0045 ##kJ/Kg.K\n",
"pc=25.\n",
"ec=0.9\n",
"Tt4=2000. ##in K\n",
"gmc=1.33\n",
"Cpg=1.188 ##kJ/Kg.K\n",
"Stg=0.005 ##Gas-side Stanton no.\n",
"Taw=2000. ##in K\n",
"ptg=2.5 ##in Mpa\n",
"Tawd=1200. ## desired temp. in K\n",
"d=2. ##thickness of internally cooled wall in mm\n",
"bms=2. ##blade mean solidity in HPT\n",
"kw=14.9 ##in W/m.K\n",
"Twc=870. ##in K\n",
"S=1/2. ##S=Stc/Stg\n",
"e=(Cpc/Cpg)*S*(Twc-Tt3)/(Tt4-Tawd)\n",
"print\"%s %.4f %s\"%(\"Cooling fraction :\",e,\"\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cooling fraction : 0.0370 \n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|